APPENDIX C QRA KAPUNI WELLSITES – WORLEY

TODD ENERGY LTD

Kapuni Wellsites Quantitative Risk Assessment

610114-RPT-R0002 July 2022

Worley New Zealand Ltd 25 Gill Street, New Plymouth 4310 PO Box 705, New Plymouth 4340 New Zealand

 Telephone
 +64-6-759 6300

 Facsimile
 +64-6-759 6301

www.worley.com

Rev	Description	Originator	Reviewer	Worley Approver	Date	Client Approval	Date
A	Issued for Review/Comment	Y Lee	L Ong	Y Lee	10/2020		
0	Approved for Use	Y Lee	L Ong	Y Lee	09/2021		
1	Re-Approved for Use	Y Lee	O Kilian	Y Lee	07/2022		

TABLE OF CONTENTS

1.	ABBREVIATIONS	3
2.	INTRODUCTION	4
2.1	Background	
2.2	Objective	
2.3	Scope	
2.4	Exclusions	5
2.5	QRA Study Cases	6
2.6	Site Overview	6
3.	METHODOLOGY	
3.1	Assessment Tools	
3.2	Assumptions	
4.	HAZARD IDENTIFICATION	16
4.1	Hazardous Materials	
4.2	Isolatable Sections and Inventory	
5.	RISK ASSESSMENT CRITERIA	
6.	WELLSITE KA-1, KA-7, KA-19 AND KA-20	
6.1	Release Scenarios	
6.2	Release Frequency	
6.3	Risk Results	
6.4	Risk Contributors	
7.	WELLSITE KA-2	27
7.1	Release Scenarios	
7.2	Release Frequency	
7.3	Risk Results	
7.4	Risk Contributors	
8.	WELLSITE KA-4 AND KA-14	
8.1	Release Scenarios	
8.2	Release Frequency	
8.3	Risk Results	
8.4	Risk Contributors	
9.	WELLSITE KA-5 AND KA-10	
9.1	Release Scenarios	
9.2	Release Frequency	
9.3	Risk Results	
9.4	Risk Contributors	
10.	WELLSITE KA-6, KA-11 AND KA-17	
10.1	Release Scenarios	
10.2	Release Frequency	
10.3	Risk Results	
10.4	Risk Contributors	
11.	WELLSITE KA-8, KA-12, KA-15 AND KA-18	50

KAPUNI WELLSITES QUANTITATIVE RISK ASSESSMENT

11.1	Release Scenarios	
11.2	Release Frequency	
11.3	Risk Results	
11.4	Risk Contributors	59
12.	WELLSITE KA-13	61
12.1	Release Scenarios	
12.2	Release Frequency	
12.3	Risk Results	
12.4	Risk Contributors	64
13.	CONCLUSIONS	65
14.	REFERENCES	67

APPENDICES

APPENDIX 1.	P&ID SECTIONALISATION FOR KA-19
APPENDIX 2.	P&ID SECTIONALISATION FOR KA-2
APPENDIX 3.	P&ID SECTIONALISATION FOR KA-4 AND KA-14
APPENDIX 4.	P&ID SECTIONALISATION FOR KA-5 AND KA-10
APPENDIX 5.	P&ID SECTIONALISATION FOR KA-6 AND KA-17
APPENDIX 6.	P&ID SECTIONALISATION FOR KA-8 AND KA-18
APPENDIX 7.	P&ID SECTIONALISATION FOR KA-13
APPENDIX 8.	FULL WELLSITES HEAT AND MATERIAL BALANCE

EXECUTIVE SUMMARY

Todd Energy Ltd. (Todd) operates the Kapuni wellsites which are at an onshore gas and condensate field located in South Taranaki approximately 50 km south of New Plymouth. 20 Kapuni wells are located on nine (9) separate wellsites in the area surrounding the Kapuni Production Station (KPS).

Quantitative Risk Assessments (QRAs) have been conducted for these wellsites. The purpose of the QRAs is to develop risk contours to meet the risk assessment requirements of the operative South Taranaki District Plan, Section 11: Hazardous Substances.

Table 1 presents the summary of main findings of the risk assessments.

	HIPAP4 Land Use Criteria (For proposed development of a potentially hazardous nature, or for land use planning in the vicinity of existing hazardous installations)						
Wellsite	5E-05 / year	1E-6 / year					
	(5E-5 / year risk contour should, as a target, be contained within the boundaries of the industrial site where applicable)	(1E-6 / year risk contour for residential development, and places of continuous occupancy such as hotels, tourist resorts)					
	KA-1/7/19/20						
Base Case	Criteria met.	Criteria met.					
	The 5E-05 / year risk contour is within the site boundary.	There are no residential developments, hotels, tourist resorts within the contour.					
Sensitivity Case	Same as Base Case	Same as Base Case					
	КА-2						
Base Case	Criteria met.	Criteria met.					
	The 5E-05 / year risk contour is within the site boundary.	There are no residential developments, hotels, tourist resorts within the contour.					
	КА-4/14						
Base Case	Criteria met.	Criteria met.					
	The 5E-05 / year risk contour is within the site boundary.	There are no residential developments, hotels, tourist resorts within the contour.					
Sensitivity Case	Same as Base Case	Same as Base Case					
	КА-5/10						
Base Case	Criteria met.	Criteria met.					
	The 5E-05 / year risk contour is within the site boundary.	There are no residential developments, hotels, tourist resorts within the contour.					
Sensitivity Case	Same as Base Case	Same as Base Case					
	KA-6/11/17						
Base Case	Criteria met.	Criteria met.					
	The risk level is lower than 5E-05 / year.	There are no residential developments, hotels, tourist resorts within the contour.					
Sensitivity Case	Same as Base Case	Same as Base Case					

Table 1: Summary of Main Findings

KAPUNI WELLSITES QUANTITATIVE RISK ASSESSMENT

	(For proposed development of a potentially ha	nd Use Criteria hazardous nature, or for land use planning in the hazardous installations)				
Wellsite	5E-05 / year	1E-6 / year				
	(5E-5 / year risk contour should, as a target, be contained within the boundaries of the industrial site where applicable)	(1E-6 / year risk contour for residential development, and places of continuous occupancy such as hotels, tourist resorts)				
	KA-8/12/15/18					
Base Case	The 5E-05 / year risk contour exceeds the site	Criteria met.				
	boundary at the north as the compressor buildings are located at the northern side of the wellsite.	There are no residential developments, hotels, tourist resorts within the contour.				
Sensitivity Case	Same as Base Case	Same as Base Case				
	КА-13					
Base Case	Criteria met.	Criteria met.				
	The 5E-05 / year risk contour is within the site boundary.	There are no residential developments, hotels, tourist resorts within the contour.				
Sensitivity Case	Same as Base Case	Same as Base Case				

The HIPAP4 Land Use Criteria are met for all wellsites except for KA-8/18 wellsite where the 5E-05/year risk contour exceeds the site boundary at the north as the compressor buildings are located at the northern side of the wellsite.

For all sensitivity cases (where the aboveground sections of the gathering pipelines are included), the risk contours are only slightly larger compared to the base case. This is due to the low release frequencies from the additional pipeline sections which do not contribute significantly to the overall risk. The assessments against the HIPAP4 criteria are all consistent with the base case findings.

Risk contributors to offsite risks are also identified to help to identify the equipment / section of wellsites that are leading to offsite impact. For wellsites that have no offsite impact, risk contributor analyses were not conducted.

1. ABBREVIATIONS

AWS	Automatic Weather Station
BLEVE	Boiling Liquid Expanding Vapour Explosion
CO2	Carbon Dioxide
DNV	Det Norske Veritas Germanischer
EI	Energy Institute
ESDV	Emergency Shutdown Valve
HCRD	Hydrocarbon Release Database
HIPAP4	NSW Hazardous Industry Planning Advisory Paper No. 4
НМВ	Heat and Material Balance
НРКО	High Pressure Knock Out
IOGP	International Association of Oil and Gas Producers
IRPA	Individual Risk Per Annum
KGTP	Kapuni Gas Treatment Plant
KPS	Kapuni Production Station
LFL	Lower Flammable Limit
LPG	Liquefied Petroleum Gas
LSIR	Location Specific Individual Risk
LTS	Low Temperature Separator
N2	Nitrogen
NIWA	National Institute of Water and Atmospheric Research Ltd
NNF	Normally No Flow
P&ID	Piping & Instrumentation Diagram
P/L	Pipeline
PECPR	Pressure Equipment, Cranes, and Passenger Ropeways
PLL	Potential Loss of Life
QRA	Quantitative Risk Assessment
STDC	South Taranaki District Council
Todd	Todd Petroleum Mining Company
VCE	Vapour Cloud Explosion
Worley	Worley New Zealand Ltd

2. INTRODUCTION

2.1 Background

Todd Energy Ltd. (Todd) operates the Kapuni wellsites which are at an onshore gas and condensate field located in South Taranaki approximately 50 km south of New Plymouth. Worley New Zealand Ltd. (Worley) has been commissioned by Todd to conduct a Quantitative Risk Assessment (QRA) for the Kapuni wellsites.

2.2 Objective

The objective of the QRA is to develop risk contours to meet the risk assessment requirements of the South Taranaki District Council (STDC) District Plan, Section 11: Hazardous Substances.

2.3 Scope

The scopes include:

- 1) Conduct risk assessment for seven (7) Kapuni wellsites with 17 wells; and
- 2) Update the existing KA-4/14 and KA-13 wellsites QRA [Ref. 1] and hence supersedes the results from that QRA.

Currently, seven (7) wellsites are producing, KA-3 is out of service and KA-9 is designed for water disposal only. The wellsite details are summarised in Table 2-1. Only the producing wells are considered in the risk assessment.

Wellsite	Number of wells	Producing	Scheduled for Abandon- ment Note 1	Suspended Note 2	Shut in ^{Note} 3	Observation / water Note 4	Notes
KA-1, KA-7, KA-19 and KA-20	4	1			1 (KA-7)	2 (KA-1 ^{Note 1} and KA-20)	
KA-2	1	1					
KA-3	1			1			
KA-4 and KA-14	2	2					KA-14 is only operating once (for 24 hours) every 10 days.
KA-5 and KA-10	2	1				1 (KA-10)	
KA-6, KA-11 and KA- 17	3	2		1 (KA-11)			
KA-8, KA-12, KA-15 and KA-18	4	2	1 (KA-12)		1 (KA-15)		
КА-9	2					2	A new well, KW03, is drilled in May 2021 for further water injection purposes.
KA-13	1	1					KA-13 is only operating in 1 out of every 3 months.
Total	20	10	1	2	2	5	

Table 2-1: Kapuni Wellsites

Notes:

- 1. Wells that are scheduled for abandonment are plugged with abandonment plans underway.
- 2. Suspended wells are plugged and major intervention is required to bring the well back to service.
- 3. Shut in wells are isolated but could be brought back into service. Note that KA-7 and KA-15 were considered as producing wells in the Kapuni Safety Case [Ref. 1], however, the wells are currently shut-in and hence are not included in the risk assessment.
- 4. Water wells are for water injection only and will not be used for hydrocarbon / producing. Observation wells are only for monitoring reservoir conditions and informing development of reserves estimates. They are designed for instrumentation only and cannot inject or produce.

There is no plan to bring the non-producing wells back online in the future. In the unlikely event that this changes, the QRA will be updated to verify any impact on the risk contours. Engagement with STDC will be completed as part of this process and a resource consent process may be required.

This revision of the report (Rev. 1) also captured the modelling update to consider delayed leak detection as early gas detection systems are not at all wellsites.

2.4 Exclusions

The following are excluded from the QRA:

- Risk from the gathering pipelines to Kapuni Production Station (KPS). The scope for each wellsite includes up to the pipeline isolation valves (if available) or when the pipelines go underground. Pipelines passing through the wellsites (e.g., at KA-4/14 and KA-5) are not considered in the base case. The pipeline sections are assessed in the sensitivity case. Note that the pipeline (P/L) to PECPR on the P&ID are used in some sections to identify the pipeline boundary;
- Risk other than hydrocarbon / process risk (e.g., transportation risk, seismic risk and volcanic risks);
- Decommissioned and/or mothballed and isolated equipment;
- Utilities such as produced water and instrument air as they do not contain any hydrocarbon inventory;
- Individual risk calculations, including Individual Risk Per Annum (IRPA) and Potential Loss of Life (PLL) as the wellsites are normally unmanned;
- Societal risk (F-N curve) as the wellsites are located as remote area with low populations;
- Corrosion inhibitors present at the wellsites as they are not flammable;
- Methanol injecting pumps as they are only used during start-up (except for KA-8/12/15/18 wellsite where methanol dosing is required throughout the year). Note that methanol tanks are always full and connected to the methanol pumps, with the pumps turned off when methanol is not being injected, hence the methanol tanks and tubing to the methanol pumps are included;
- Toxic effect of carbon dioxide; and
- Vapour Cloud Explosion (VCE), as there is limited equipment at the wellsites, and these areas are open with good ventilation expected throughout the year. The possibility of flammable vapour accumulating and developing into subsequent vapour cloud explosions, are considered not credible.

2.5 QRA Study Cases

The QRA study includes the base case and a sensitivity case to study the impact of different modelling input / assumption on the risk results. The QRA base case includes the current operations of the Kapuni wellsites with wellsites' equipment up to the pipeline isolation valves (if available) or when the pipelines go underground. Pipelines passing through the wellsites (e.g., at KA-4/14 and KA-5) are not considered in the base case.

One sensitivity case is considered in the Kapuni Wellsites QRA:

1. Include the aboveground gathering pipeline sections downstream of the pipeline isolation valves. The pipeline sections contain the entire pipeline inventory. The pipelines inventories are referenced from the Kapuni Safety Case [Ref. 1].

The details of the base case and sensitivity case are summarised in Table 2-2.

QRA Case	Details	Potential Impact
Base case	Current wellsites' operation up to the gathering pipeline isolation valves (if available) or when the pipelines go underground	-
	Include the aboveground gathering pipeline sections downstream of the pipeline isolation valves.	
Sensitivity case	Note that there is no sensitivity case for KA-2 wellsite as there is no pipeline isolation valves and no PECPR identification for the pipeline. The entire aboveground gathering pipeline sections are considered in the base case only.	Addition QRA section(s) for the pipeline sections with the entire pipeline inventory.

2.6 Site Overview

Kapuni is an onshore gas and condensate field located in South Taranaki, approximately 50 km south of New Plymouth. 20 Kapuni wells are located on nine (9) separate wellsites in the area surrounding the Kapuni Production Station (KPS). The production wellsite process is a simple separation of gas and liquids involving the direction of wellstream gas and liquids to a low temperature separator (LTS) unit on the wellsite. The LTS separates the gas and liquids by means of pressure reduction to cause cooling.

An aerial overview of the wellsites location with reference to KPS is shown in Figure 2-1.

The wellsites access points are via vehicle gates which are normally adjacent to the main wellsite control huts for the wellsites. Each wellsite hut is a single storey building which contains the wellsite control logic systems, emergency and communications equipment.

The wellsites have an open layout with areas separated from each other to prevent knock-on effects. The open area reduces the potential for overpressure from an explosion and reduces fire damage / escalation potential.

KAPUNI WELLSITES QUANTITATIVE RISK ASSESSMENT

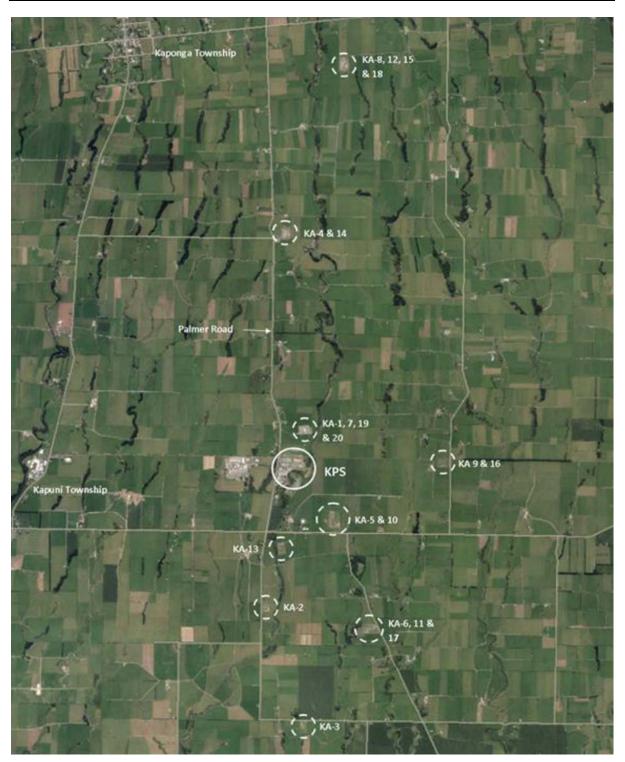


Figure 2-1: Kapuni Wellsites Location with reference to Kapuni Production Station (KPS)

The details of each of the wellsite is as below.

2.6.1 Wellsite KA-1, KA-7, KA-19 and KA-20

Located off Palmer Road, the site contains 4 wells. A wellstream heater is fitted to the KA-19 well. KA-1 well is a contingency for water injection, KA-7 is not operational and KA-20 well is an observation well.

This site also acts as a distribution point for gas from the northern wells. It re-routes gas arriving from the gathering lines from wellsite KA-4/14 and KA-8/12/15/18 to KPS.

2.6.2 Wellsite KA-2

Located on Palmer Road, the site has an LTS unit and the flowline is equipped with two wellstream coolers.

2.6.3 Wellsite KA-3

This wellsite has been suspended and plugged.

2.6.4 Wellsite KA-4 and KA-14

Located just off Palmer Road, the site contains two wells, two LTS units, and a wellstream heater.

2.6.5 Wellsite KA-5 and KA-10

Located just off Skeet Road, this site contains one producing well (KA-5) and one observation well (KA-10), with a Desander unit for solids separation, and a PCV used on start-up.

2.6.6 Wellsite KA-6, KA-11 and KA-17

Located just off Ahipaipa Road, this site contains two producing wells and one suspended well (KA-11). KA-6 and KA-17 wellstream fluids are co-mingled, routed through a wellstream cooler and then to an LTS Unit.

2.6.7 Wellsite KA-8, KA-12, KA-15 and KA-18

Located off Eltham Road, this site contains two producing wells. KA-12 well is scheduled for abandonment and KA-15 well is shut-in and isolated. Two wellstream process skids and two wellhead compression units are fitted to the wells.

2.6.8 Wellsite KA-13

Located just off Skeet Road, this site contains one well, Desander, a flowline choke valve and a High Pressure Knock Out (HPKO) vessel. It connects into the KA-6/5 gathering lines. The HPKO is now bypassed and is not considered.

2.6.9 Wellsite KA-9

Located on Lower Duthie Road, two wells were drilled on the site, KA-9 (referred to as KW-2) and KA-16. Both wells are currently in service as water injection wells. There is very little equipment left on the wellsite, only the water injection line, a filter, and two pig receivers.

The wellsites flow schematic is presented in Figure 2-2.

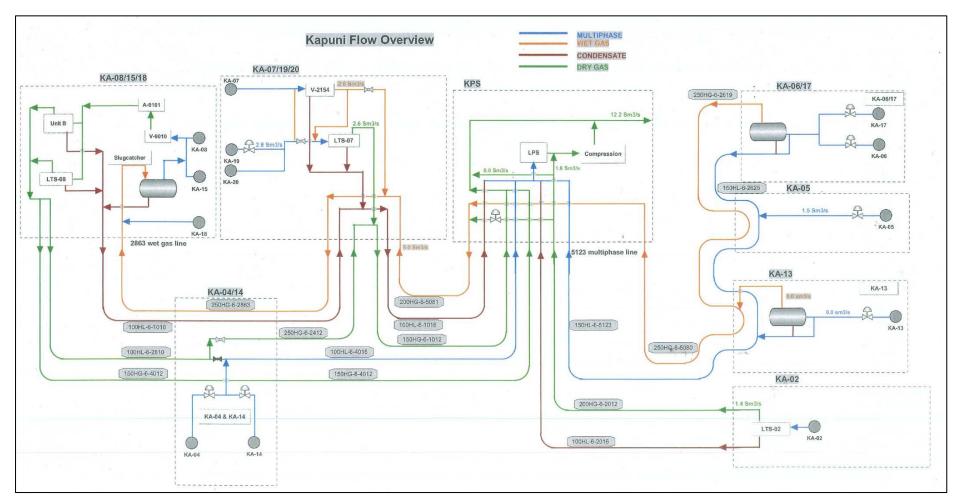


Figure 2-2: Kapuni Wellsites Flow Schematic

3. METHODOLOGY

The methodology followed for completing the QRA is aligned with good industry practice and the Todd Energy Fire and Explosion Analysis and Quantitative Risk Assessment Methodology Guideline [Ref. 2]. The generic process, specified in the Worley's Onshore QRA Method Statement [Ref. 3], is illustrated in Figure 3-1.

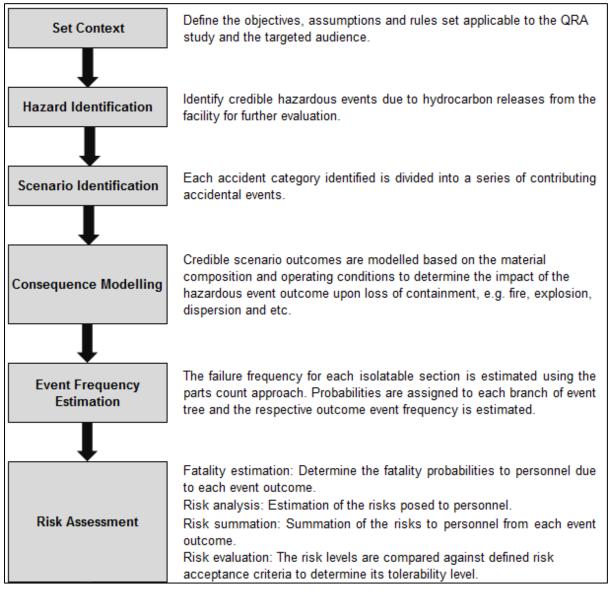


Figure 3-1: QRA Methodology

3.1 Assessment Tools

DNV Safeti Software (formerly known as Phast Risk) [Ref. 4] is used to build the QRA model. Safeti is an integrated consequence and risk modelling package developed by DNV Software aimed at the onshore petrochemical and chemical process industry for assessing process plant risks via comprehensive QRA. It is designed to perform all the analytical, data processing and results presentation elements of a QRA within a structured framework. Note that the QRA study started in 2020, where the QRA model was built using Safeti version 8.22, which was the latest version at that time. For the subsequent modelling update, a newer software version at the time of update was used. For this revision of the report (Rev. 1), Safeti version 8.6 was used to perform the required updates. Not all wellsite models were updated to Safeti 8.6.

3.2 Assumptions

An Assumptions Register [Ref. 5] was generated which outlines the basis of all assumptions and the input bases inherent in the QRA study. Key assumptions are shown in the following subsections for reference.

3.2.1 Atmospheric Conditions

Meteorological conditions impact the outcomes of release modelling, including downwind flammable and toxic vapour cloud dispersion distance (influenced by atmospheric stability and wind speed), rate of pool vaporisation (ambient temperature), and atmospheric attenuation of radiant heat (temperature and relative humidity).

The following conditions are used for the QRA modelling.

Wind Speed and Direction

Wind speed and direction data are taken from NIWA's CliFlo database [Ref. 6] for the Hawera Automatic Weather Station (AWS) to represent the atmospheric conditions at Kapuni. Data for 5-year period from January 2008 to December 2012 are taken, with wind speed and direction measurements taken every hour. The wind rose is shown in Figure 3-2.

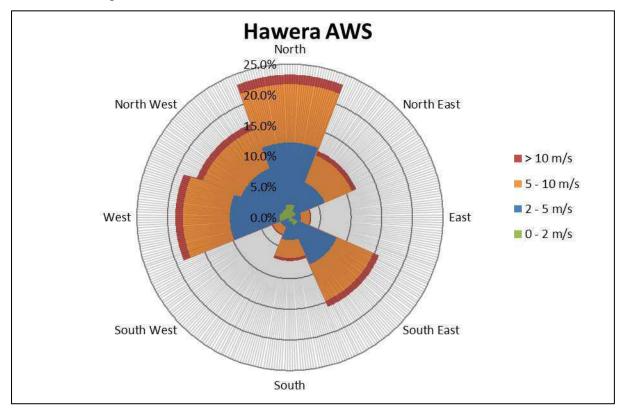


Figure 3-2: Hawera AWS Windrose

The following wind speed and atmospheric stability (Pasquill stability) combinations are used in the QRA. The wind data in tabular format is given in Table 3-1.

Wind Speed / Pasquil Stability	North	North East	East	South East	South	South West	West	North West	Total
0 - 2 m/s / F	2.1%	1.1%	0.3%	1.4%	0.6%	0.3%	1.7%	1.5%	9.0%
2 - 5 m/s / D	10.1%	5.1%	1.5%	6.9%	3.1%	1.4%	8.2%	7.2%	43.5%
> 5 m/s / D	11.1%	5.6%	1.7%	7.5%	3.4%	1.5%	8.9%	7.9%	47.5%
Total	23.3%	11.8%	3.5%	15.9%	7.1%	3.2%	18.7%	16.5%	100.0%

Table 3-1: Hawera AWS Wind Data

Note:

- Pasquill Stability F stable, night with moderate clouds and light/moderate wind
- Pasquill Stability D neutral, little sun and high wind or overcast/windy night

For the modelling, the wind speed reference height (the height at which the wind impacts a release), is set at 1 m (i.e. so as to match the release height). The Power Law wind profile is applied, where the wind speed varies with height according to power-law profile.

Ambient Temperature and Relative Humidity

The following ambient temperature and relative humidity are used in the QRA:

- Ambient temperature: 14°C
- Relative humidity: 83%

Solar Radiation

Solar radiation is not included in the thermal radiation calculations.

Topography

Safeti cannot take into account the effects of the local undulating topography for the gas dispersion. A surface roughness of 30 mm was applied, which generally represents an area of "open flat terrain; grass, few isolated objects" to represent the open area of the wellsites.

3.2.2 General Release Frequency

The leak frequencies for process equipment are taken from the International Association of Oil and Gas Producers (IOGP) Process Release Frequency 2019 [Ref. 7]. Release frequencies of the main process equipment items are based on an analysis of the UK HSE hydrocarbon release database (HCRD). Two sets of data are presented in IOGP Process Release Frequency, which include the 1992 – 2015 data and 2006 – 2015 data. The recommended values based on experience in the period 2006 – 2015 (inclusive) are used.

The IOGP Release Frequency Data does not provide the frequencies for atmospheric storage tanks. Therefore, the following leak frequencies from the TNO Purple Book [Ref. 8] are used for the methanol tanks.

The blowout likelihood from the IOGP Blowout Frequencies [Ref. 9] are used, specifically data for offshore operations in areas not operating according to North Sea Standard (Table 2-3 in the IOGP). It is noted that the Kapuni wellsites are located onshore, however, IOGP recommends the use of offshore data presented in Section 2 in the IOGP but noted that there will be a greater degree of uncertainty.

3.2.3 Release Hole Sizes

For every component failure, there is a range of credible hole sizes from pinhole leak to full bore rupture. The hole size grouping from the OGP Process Release Frequency together with the representative hole sizes used in the QRA is shown in Table 3-2.

OGP Hole Size Group (mm)	Representative Hole Size (mm)
1 - 3	2
3 - 10	6
10 - 50	22
50 - 150	85
> 150	Range geometric mean

Table 3-2: Hole Size Distribution

The representative hole sizes are chosen using the geometric mean of the smallest and largest hole sizes in each group. The same approach is taken to select the representative hole size for rupture cases (release > 150 mm).

It is noted for methanol tanks that references to TNO Purple Book failure data, actual hole sizes following the failure data are used as there are no sufficient leak size distribution data in Purple Book to calculate the geometric mean.

22 mm is used as the maximum hole size for small bore fittings. The maximum hole size for a flange is also limited to 22 mm as a release from a flange is normally limited to a segment of a gasket between bolts.

Leak frequency modification factors are also applied to the release frequency database as per Todd Energy's Methodology Guideline [Ref. 2].

3.2.4 Ignition Probabilities

The probability of ignition of a release is a function of the release rate, the nature of the material being released and the conditions of the surrounding plant. The Energy Institute (EI) ignition probability models [Ref. 10] referenced in IOGP Ignition Probabilities [Ref. 11] are used for the estimation of overall ignition probability of loss of containment scenarios.

For wellsites, ignition probabilities are taken from Scenario 5 and 6 and assumed to particularly apply to a 'plant' where processing takes place. This is considered conservative for use at wellsites as not much processing takes place.

The scenarios are described as:

- Scenario 5 Small Plant Gas LPG (Gas or LPG release from small onshore plant) Releases of flammable gases, vapour or liquids significantly above their normal boiling point from small onshore plants (plant area up to 1200 m², site area up to 35,000 m²).
- Scenario 6 Small Plant Liquid (Liquid release from small onshore plant) Releases of flammable liquids that do not have any significant flash fraction (10% or less) if released from small onshore plants (plant area up to 1200 m², site area up to 35,000 m²) and which are not bunded or otherwise contained.

The graphs of ignition probabilities as a function of mass release rate are shown in Figure 3-3.

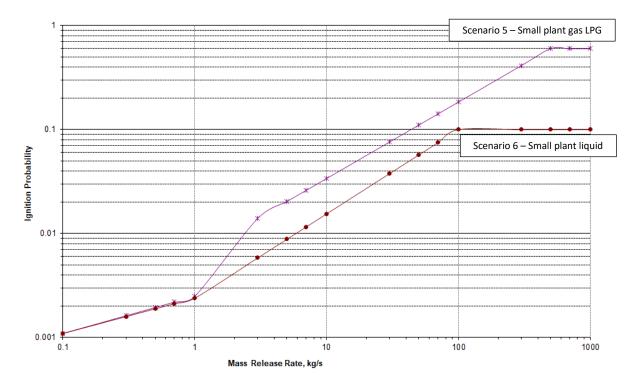


Figure 3-3: Ignition Probabilities

The graph represents the total ignition probability. The Energy Institute suggests that an overall distribution for early to delayed ignition ratio of 30:70 to 50:50 split is considered reasonable. The timing of ignition is used as a means to predict the nature of the ignited event. Early ignition is taken to indicate a jet fire or pool fire depending on the material released. Delayed ignition is taken to indicate that the ignition would initially result in a flash fire or explosion.

For this study, a 30:70 split for early to delayed ignition probability is used. Given the maturity of the hazardous area, it can be assumed that probability of early ignition would be low.

3.2.5 Fatality Criteria

Thermal Radiation

The method of calculating the probability of fatality for an individual, given known exposure duration and thermal heat radiation levels, is undertaken by using a Probit function. The Probit function is a general formula which takes the same form, but with various constants used. The Probit used for lethality calculations is taken from the TNO Green Book [Ref. 12]. The Probit function is defined as follows:

Where:

t = exposure duration in seconds

q = thermal radiation level in W/m^2

Safeti calculates the Probit values during the analysis.

An exposure duration of 20 seconds has been used as a base case, although it is noted that personnel are likely to find some form of shielding protection within this time frame.

Flash Fire

If personnel are within the 100% lower flammable limit (LFL) of the gas plume, 100% fatality is assumed. LFL is the lower end of the concentration range over which the flammable mixture of a gas/ vapour in air can be ignited at a given temperature/ pressure.

A flash fire occurs when a dispersed cloud of flammable gas or vapour and air mixture is ignited within its flammable regions, causing a wall of flame to spread throughout the flammable region and back to the release point. The flame propagates through the cloud in a manner such that negligible or no damaging overpressure is generated. This flash is almost instantaneous as the flame propagates at high speed through the cloud and back to the source.

An assumption of 100% fatality rate within the footprint of the cloud is conservative and does not allow for potential risk reducing considerations such as;

- Uneven mixing of gas and air in the cloud resulting in uneven propagation of the flame,
- Topography,
- Sparsely populated rural land use adjoining the site,
- Availability of shelter,
- Opportunity for escape, and
- Clothing worn by persons exposed to the flash fire.

Thermal radiation outside of the flash fire falls off rapidly and is not sustained due to the instantaneous nature of the event. The potential for fatality outside the flash fire footprint is not considered credible.

BLEVE

Boiling Liquid Expanding Vapour Explosion (BLEVE) is an escalation scenario that occurs as a result of prolonged flame impingement on above ground pressurised vessels containing materials such as LPG or lighter end hydrocarbon. The probability of BLEVE depends on various factors, including the types of flammable material and liquid inventory in the vessel, material of construction of the vessel, types and number of fire protection systems (e.g. relief valves, cooling systems), mechanism of vessel failure (external impact, jet fire impingement or pool fire impingement), etc. Passive Fire Protection can be provided on pressurised vessels to minimise the probability of BLEVE. There is no clear guideline or criteria to determine the likelihood of a BLEVE on a pressurised vessel. For this QRA, BLEVE is considered credible if a pressurised vessel containing at least 4 m³ of volatile hydrocarbon (liquid butane or lighter) is exposed to direct flame impingement for 5 minutes or longer.

However, based on the liquid inventory and liquid composition in the vessels, BLEVE is considered not possible for any vessel at Kapuni wellsites.

4. HAZARD IDENTIFICATION

4.1 Hazardous Materials

The Heat and Balances (HMBs) for the wellsites are provided by Todd Process Engineer. The wellstream fluid from each well have different flowrates, material compositions and operating conditions. Any stream that has unique consequences will be represented by dedicated sections. For sections with similar operating conditions or fluid composition that have similar consequence results, the worst case scenario will be selected as representative, to rationalise the number of scenarios performed. This is to avoid the averaging out of inputs of different wellstreams, as it may create a stream with 'brand new' operating conditions, material compositions and flowrates which does not represent the actual release conditions.

As far as is reasonable, the compositions in each stream are simplified, i.e. isomers are summed together and the C6+ hypothetical materials (KP01, up to KP30) are represented by different heavy alkanes. The following alkanes are selected to represent different ranges of hypothetical materials found in the streams based on their properties:

- KP01 to KP10 are assumed to be C7;
- KP11 to KP20 are assumed to be C10; and
- KP21 to KP30 are assumed to be C20.

The important characteristic of molecular weight is kept close to the actual value to ensure the release rate is representative. The simplified HMB used in the QRA is presented in Appendix 8.

The effects of water cut of the hydrocarbon on fire hazards are considered identify the streams that are considered not flammable due to high water content. According to Oil and Gas UK Fire and Explosion Guidance [Ref. 13], for water cuts under 50%, no significant reduction in heat fluxes to engulfed objects can be expected (<10%). However, for water cuts over 50%, the flames are significantly less radiative, and the overall heat flux to an obstacle can be reduced by 40% or more. In line with Oil and Gas UK Fire and Explosion Guidance, it is assumed that a mixture remains flammable if it has a water cut of up to 125% (defined as mass of water/ mass of fuel x 100%), although not necessarily capable of supporting a stable flame in the absence of some other supporting mechanisms.

Similarly, increasing concentrations of CO_2 were found to reduce the likelihood of ignition of a methane jet release. At CO_2 concentrations of 22–40% (v/v) it was possible for a self-sustaining flame to exist, but beyond these concentrations a pilot flame was required to aid combustion. Beyond 60% CO_2 the pilot flame had no effect and the mixture was completely inert [Ref. 14].

The average flammability limits of the mixtures are calculated by Safeti software, considering the effects of the inert components (e.g. CO_2 , N_2 and water).

4.2 Isolatable Sections and Inventory

An ESD system can limit the outflow once a loss of containment occurs. When activated, emergency shut-down valves (ESDVs) divide the process system into a number of isolatable sections, with each potential leak source associates with a particular isolatable inventory. These sections were split further where necessary and the entire contained inventory was considered as available for release.

Isolatable sections are highlighted in the Piping and Instrumentation Diagrams (P&IDs) and presented in Appendix 1 to Appendix 7. Following the sectionalisation process, parts counts are conducted to perform the frequency analysis for the QRA.

All wellsites have automated ESD on fire detection, and KA-8/18 has automatic ESD on gas detection as well. To assess the impact of additional release inventory due to the delayed detection and isolation, a sensitivity check was conducted on the QRA models for a few selected wellsites. It was found for hydrocarbon gas releases, there is no noticeable impact to the risk results and the study conclusion, as the consequence distances from the gas scenarios have reached steady state and the additional gas inventory will only lead to longer release duration

with no impact to the effect distances. However, for condensate releases, the longer release duration can lead to a larger pool accumulation on the ground.

Condensate leaks at the wellsites or along the pipelines (other than minor leaks) will lead to pressure and/or liquid level drop at the process at KPS, which will alert the operators to perform a check at the wellsite(s). Given the proximity to the KPS, operators can generally arrive at the wellsites within 15 minutes to initiate the site ESD. As such, 15 minutes delayed detection will be assumed where 15 minutes of released inventory will be added. Full bore rupture cases are only considered credible when there is major work on site, and the wellsite would be manned to detect the leak immediately. Hence undetected full bore rupture is not considered credible.

The wellsites bunding and drainage systems are designed to contain hazardous materials within the boundaries of the wellsite. Therefore, the condensate pool is assumed to remain confined within the site.

5. RISK ASSESSMENT CRITERIA

This section presents results of the QRA. Risks estimated in this study are presented in the form of Location Specific Individual Risk (LSIR) contours. LSIR is defined as the risk of fatality at a point in space to a hypothetical individual at a location for 365 days per year, 24 hours a day, unprotected and unable to escape. In practice this is not the case and this criterion is therefore conservative.

As there are no standard risk criteria which have been developed for the New Zealand context, this has been assessed against the suggested risk criteria in the NSW HIPAP No. 4 "Risk Criteria for Land Use Planning" [Ref. 16] as shown in Table 5-1.

Land Use	Risk Criteria Adopted (per annum)	Interpretation for QRA
Industrial	5E-05 (1 in 20,000)	5E-05 risk contour should, as a target, be contained within the boundaries of the industrial site where applicable
Sporting complexes and active open space	1E-05 (1 in 100,000)	1E-05 risk contour should not extend to these areas
Commercial developments including retail centres, offices and entertainment centres	5E-06 (1 in 200,000)	5E-06 risk contour should not extend to these areas
Residential developments, hotels, tourist resorts	1E-06 (1 in 1 million)	1E-06 risk contour should not extend to these areas
Hospitals, schools, childcare facilities, old age housing	5E-07 (1 in 2 million)	5E-07 risk contour should not extend to these areas

Table 5-1: Individual Fatality Risk Criteria

Kapuni wellsites are situated in the zone classified as "Rural" under the operative South Taranaki District Plan [Ref. 17] and surrounded by dairy farmland, and as such a suitable land use category is not easily inferred from the above table. There are no industrial, sporting complexes, hospitals or commercial developments in the area surrounding the wellsites. The closest identified offsite parties are dwellings or houses. Therefore, only the *"Industrial"* (5E-05 / year) and *"Residential"* (1E-06 / year) are considered.

6. WELLSITE KA-1, KA-7, KA-19 AND KA-20

6.1 Release Scenarios

The P&IDs showing the isolatable sections for KA-19, which is the only producing well at this wellsite, are presented in Appendix 1. Table 6-1 details the section description and the respective operating conditions that are used in the QRA.

No.	Section ID	Description	Material / Stream Note 1	Pressure (barg)	Temp. (°C)	Largest Connection Size (mm)	Section Inventory (m³)	Isolatable Inventory (m ³)
1	01_KA19_01_WLHEAD_V	Wellstream fluid from KA-19 wellhead to SDV-2140A	15	33.8	40.29	150	Unlimit	ed ^{Note 2}
2	02_KA19_02_FLWLNE_V	Wellstream fluid from wellhead SDV-2140A to choke valve HCV-2140X	15	33.8	40.29	150	0.8	6.6
3	03_KA19_02_CHKLNE_V	Wellstream fluid from choke valve HCV-2140X to Wellstream Cooler (E- 2153)	16	23.1	33.6	150	1.3	6.6
4	04_KA19_02_WSCOOL_V	Wellstream fluid from Wellstream Cooler (E-2153) to Wellhead Knockout (V-2154)	17	22.8	24	150	1.2	6.6
5	05_KA19_02_WLHKOT_V	Hydrocarbon gas from Wellhead Knockout (V-2154) to SDV-2154A and manual valve 150V385	19	22.8	24	80	3.3	6.6
6	06_KA19_02_WLHKOB_L	Hydrocarbon liquid from Wellhead Knockout (V-2154) to SDV-2154B	18	22.8	24	150	2.1	2.1 Note 4
16	16_KA19_04_CONPIP_L	Hydrocarbon liquid from SDV-2154B and SDV-2853A to Condensate Pipeline	18	22.8	24	100	38.2 Note 3	38.2 Note 5
17	17_KA19_05_GASPP1_V	Hydrocarbon gas from SDV-2154A mix with wet gas from A-5002 to XSV-2165A on the Gas Pipeline to KA-8 via KA-4/14	19	22.8	24	250	15.9	17.9
18	18_KA19_05_GPIG65_V	Scraper Trap (A-2165)	19	22.8	24	250	1.0	17.9
19	19_KA19_05_GPIG63_V	Scraper Trap (A-2163)	19	22.8	24	200	1.0	17.9
20	20_KA19_06_GASPP2_V	Hydrocarbon gas from SDV-2852C mix with dry gas from KA-4/14 wellsite to Gas Pipeline to KPS	8	28.2	23.11	250	7.2 Note 3	8.2

Table 6-1: Release Scenarios and Operating Conditions for KA-19

No.	Section ID	Description	Material / Stream Note 1	Pressure (barg)	Temp. (°C)	Largest Connection Size (mm)	Section Inventory (m ³)	Isolatable Inventory (m ³)
21	21_KA19_06_GPIG67_V	Scraper Trap (A-2167)	8	28.2	23.11	250	1.0	8.2
22	22_KA19_06_GPIG66_V	Scraper Trap (A-2166)	8	28.2	23.11	150	1.0	8.2
23	23_KA19_07_VECGAS_V	KGTP Treated Gas to XSV-2169A for export pipeline (to Kiwi Dairy Co. & Taranaki Byproduct Co.)	Kiwi GC	21.1	38.9	250	7.7 Note 3	15.4
24	24_KA19_07_PG2169_V	Scraper Trap (A-2169)	Kiwi GC	21.1	38.9	250	7.7	15.4
25	25_KA19_07_PG2164_V	Scraper Trap (A-2164)	Kiwi GC	21.1	38.9	150	7.7	15.4
26	26_KA19_08_METTNK_L	Methanol Tank (T-2191) to Methanol Pumps	Methanol	Atm.	Amb.	50	5.0	5.0
		Sensitivity Cases						
27	27_KA19_09_KA4GPL_V	Dry gas from KA-4/14 to XSV-2167A	8	28.2	23.11	250	97.3 Note 3	97.3
28	28_KA19_10_KA8GPL_V	Wet gas from XSV-2165A to KA-8/18	19	22.8	24	250	38.7 Note 3	38.7
29	29_KA19_11_KIWICO_V	KGTP Treated Gas from XSV-2169A to export pipeline (to Kiwi Dairy Co. & Taranaki Byproduct Co.)	Kiwi GC	21.1	38.9	250	1100.0 Note 3	1100.0

Notes:

- 1. Stream composition refers to the stream numbers in the HMB. The full HMB for all wellsites is attached Appendix 8.
- 2. Inventory from the wellhead section is considered to be unlimited because they can be supplied from the downhole reservoir.
- 3. Sections connecting to the pipeline inventories due to the lack of isolation valve.
- 4. Inventories for modelling the 22 mm leak was increased to 12739 kg and 190159 kg for 85 mm leak, assuming the delayed detection and isolation of 15 min (i.e., the releases can sustain up to 15 min). This is conservatively assumed that the leaks can sustain at initial pressure with no depressurisation at the system.
- 5. Inventory for modelling the 71 mm leak was increased to 131598 kg, assuming the delayed detection and isolation of 15 min (i.e., the releases can sustain up to 15 min). This is conservatively assumed that the leaks can sustain at initial pressure with no depressurisation at the system.

6.2 Release Frequency

The leak frequencies for the process releases are estimated for each representative hole size using parts count results and the historical leak frequencies. The leak frequencies for KA-19 sections for the base case are shown in Table 6-2.

No	QRA Event	1 - 3 mm	3 - 10 mm	10 - 50 mm	50 - 150 mm	> 150 mm	TOTAL	% Contrib.
1	01_KA19_01_WLHEAD_V	3.37E-05	1.38E-05	5.67E-06	1.13E-06	7.09E-07	5.50E-05	0.3%
	KA-19 Blowout					4.20E-05	4.20E-05	0.2%
2	02_KA19_02_FLWLNE_V	9.10E-04	3.85E-04	2.06E-04	7.36E-06	1.58E-06	1.51E-03	7.9%
3	03_KA19_02_CHKLNE_V	1.88E-03	8.15E-04	4.43E-04	3.27E-05	3.77E-06	3.18E-03	16.6%
4	04_KA19_02_WSCOOL_V	1.25E-03	4.67E-04	1.93E-04	4.23E-05	7.70E-07	1.95E-03	10.2%
5	05_KA19_02_WLHKOT_V	1.21E-03	5.38E-04	2.88E-04	4.71E-05		2.08E-03	10.8%
6	06_KA19_02_WLHKOB_L	7.25E-04	3.42E-04	1.88E-04	5.65E-05	1.41E-06	1.31E-03	6.8%
16	16_KA19_04_CONPIP_L	1.28E-03	5.68E-04	2.99E-04	5.02E-05		2.20E-03	11.5%
17	17_KA19_05_GASPP1_V	7.89E-04	3.47E-04	1.85E-04	2.45E-05	5.30E-06	1.35E-03	7.0%
18	18_KA19_05_GPIG65_V	7.94E-07	4.05E-07	2.24E-07	5.42E-08	1.77E-08	1.49E-06	0.01%
19	19_KA19_05_GPIG63_V	3.75E-07	1.94E-07	1.08E-07	2.83E-08	8.83E-09	7.15E-07	0.004%
20	20_KA19_06_GASPP2_V	1.11E-03	4.89E-04	2.60E-04	3.01E-05	5.67E-06	1.90E-03	9.9%
21	21_KA19_06_GPIG67_V	1.84E-07	9.52E-08	5.28E-08	1.35E-08	4.42E-09	3.50E-07	0.002%
22	22_KA19_06_GPIG66_V	9.29E-08	4.81E-08	2.67E-08	1.32E-08	4.39E-12	1.81E-07	0.001%
23	23_KA19_07_VECGAS_V	1.60E-03	6.89E-04	3.71E-04	3.38E-05	3.59E-06	2.70E-03	14.1%
24	24_KA19_07_PG2169_V	1.17E-06	5.96E-07	3.30E-07	7.64E-08	2.67E-08	2.20E-06	0.011%
25	25_KA19_07_PG2164_V	1.01E-07	5.17E-08	2.86E-08	1.35E-08	4.39E-12	1.95E-07	0.001%
26	26_KA19_08_METTNK_L	4.64E-04	3.03E-04	1.12E-04	1.35E-05	5.00E-06	9.03E-04	4.7%
	TOTAL	1.13E-02	4.96E-03	2.55E-03	3.44E-04	6.99E-05	1.92E-02	
	% Contribution	59%	26%	13%	2%	0.4%		

Table 6-2: Hydrocarbon Release Frequencies for KA-19 (Base Case)

The total leak frequencies for KA-19 wellsite (for the base case) is 1.92E-02 per year, which is equivalent to one leak every 52.1 years. Most of the leaks are predicted to be from small leaks, where 85% of the leaks are from hole sizes less than 10 mm diameter.

The leak frequencies for KA-19 sections for the sensitivity case are shown in Table 6-3.

No	QRA Event	1 - 3 mm	3 - 10 mm	10 - 50 mm	50 - 150 mm	> 150 mm	TOTAL	% Contrib.
27	27_KA19_09_KA4GPL_V	3.19E-05	1.42E-05	7.35E-06	1.14E-06	3.54E-07	5.50E-05	0.3%
28	28_KA19_10_KA8GPL_V	3.19E-05	1.42E-05	7.35E-06	1.14E-06	3.54E-07	5.50E-05	0.3%
29	29_KA19_11_KIWICO_V	3.19E-05	1.42E-05	7.35E-06	1.14E-06	3.54E-07	5.50E-05	0.3%
TOTAL (Base Case and Sensitivity)		1.14E-02	5.00E-03	2.57E-03	3.48E-04	7.09E-05	1.93E-02	
% Contribution		59%	26%	13%	2%	0.4%		

Table 6-3: Hydrocarbon R	Poloaco Eroquancias	for KA 10/	Sancitivity Casa)
Tuble 0-5. Hyurocurbon h	neieuse i requericies	JUI KA-19 (Sensitivity Cusej

The total leak frequency for KA-19 wellsite (including the sensitivity cases) is 1.93E-02 per year, which is equivalent to one leak every 51.7 years.

6.3 Risk Results

The risk results are presented in this section. The risk contours are contributed from both flammable and toxic risks from all release scenarios based on all the hazardous materials onsite.

The only toxic risk onsite is from the methanol tank due to methanol toxicity. As the methanol tank is stored at atmospheric condition with limited inventory (5 m³ at maximum capacity) and bunded, the methanol toxic risk is very minor and localised. Hence no separate toxic risk contour was provided. Methanol toxic effect was modelled by using the probit method as detailed in the Assumptions Register [Ref. 5].

6.3.1 Base Case

The base case LSIR for KA-19 wellsite is presented in Figure 6-1.

Figure 6-1: LSIR Contours for KA-19 Wellsite (Base Case)

The risk assessed against the HIPAP4 criteria are summarised in Table 6-4.

LSIR	Risk Contour	HIPAP4 Land Use Criteria	Result
5E-05 / year	Blue	5E-5 / year risk contour should, as a target, be contained within the boundaries of the industrial site where applicable.	Criteria met. The 5E-05 / year risk contour is within the site boundary.
1E-6 / year	Red	1E-6 / year risk contour should not extend to residential developments, hotels, tourist resorts.	Criteria met. There are no residential developments, hotels, tourist resorts within the contour.

Table 6-4: LSIR Results Assessed Against the HIPAP4 Land Use Criteria for KA-19 (Base Case)

6.3.2 Sensitivity Case

The LSIR for KA-19 wellsite sensitivity case, which include the gathering pipeline sections is presented in Figure 6-2.

Figure 6-2: LSIR Contours for KA-19 Wellsite (Sensitivity Case)

The risk contours for the sensitivity case are larger compared to the base case. Nonetheless, and the assessment against the HIPAP4 criteria is the same. Hence is it not repeated.

6.4 Risk Contributors

The risk contributors to offsite risks at selected locations (points A to D) as shown in Figure 6-3 can be identified from the QRA model.

Figure 6-3: Location Selected to Identify Risk Contributors at KA-19 wellsite

6.4.1 Base Case

The risk contributors for the base case with the risk contributors and percentage of contribution are shown in Table 6-5.

Point	LSIR (per year)	Contributor	% Contribution	Consequence
A	5.87E-07	06_KA19_02_WLHKOB_L_85 mm (Hydrocarbon liquid from Wellhead Knockout (V-2154) to SDV-2154B)	56.8%	Jet fire with pool fire from early ignition (78%) Delayed pool fire with flash fire (22%)
		16_KA19_04_CONPIP_L_71 mm (Hydrocarbon liquid from SDV-2154B (from Wellhead Knockout (V-2154)) to Condensate Pipeline)	42.2%	Jet fire with pool fire from early ignition (76%) Delayed pool fire with flash fire (24%)
В	5.44E-07	06_KA19_02_WLHKOB_L_85 mm (Hydrocarbon liquid from Wellhead Knockout (V-2154) to SDV-2154B)	61.3%	Jet fire with pool fire from early ignition (78%) Delayed pool fire with flash fire (22%)

Table 6-5: Risk Contributors to Selected Locations for KA-19 (Base Case)

KAPUNI WELLSITES QUANTITATIVE RISK ASSESSMENT

Point	LSIR (per year)	Contributor	% Contribution	Consequence
		16_KA19_04_CONPIP_L_71 mm (Hydrocarbon liquid from SDV-2154B (from Wellhead Knockout (V-2154)) to Condensate Pipeline)	38.7%	Jet fire with pool fire from early ignition (69%) Delayed pool fire with flash fire (31%)
C	2.04E-06	06_KA19_02_WLHKOB_L_85 mm (Hydrocarbon liquid from Wellhead Knockout (V-2154) to SDV-2154B)	44.8%	Jet fire with pool fire from early ignition (69%) Delayed pool fire with flash fire (31%)
		16_KA19_04_CONPIP_L_71 mm (Hydrocarbon liquid from SDV-2154B (from Wellhead Knockout (V-2154)) to Condensate Pipeline)	37.8%	Delayed pool fire with flash fire (68%) Jet fire with pool fire from early ignition (32%)
D	3.46E-07	06_KA19_02_WLHKOB_L_85 mm (Hydrocarbon liquid from Wellhead Knockout (V-2154) to SDV-2154B)	63.5%	Jet fire with pool fire from early ignition (91%) Delayed pool fire with flash fire (9%)
		16_KA19_04_CONPIP_L_71 mm (Hydrocarbon liquid from SDV-2154B (from Wellhead Knockout (V-2154)) to Condensate Pipeline)	34.6%	Jet fire with pool fire from early ignition (87%) Delayed pool fire with flash fire (13%)

The risk contributor analysis shows that the offsite risk contributors at different locations are contributed by two (2) same scenarios, which are the liquid sections from the Wellhead Knockout (V-2154) to the SDV-2154B (06_KA19_02_WLHKOB_L) and from the same SDV to the condensate export pipeline (16_KA19_04_CONPIP_L).

These sections have relatively high release frequencies (contributed 18.5% to the total wellsite leak frequency), and with the potential to have a large leak for 15 minutes (conservatively assumed that the leaks were remained at initial release rate with no depressurisation due to the leaks), hence can lead to a large liquid release.

6.4.2 Sensitivity Case

The risk contributors for the sensitivity case with the risk contributors and percentage of contribution are shown in Table 6-6.

Point	LSIR (per year)	Contributor	% Contribution	Consequence
A	7.32E-07	06_KA19_02_WLHKOB_L_85 mm (Hydrocarbon liquid from Wellhead Knockout (V-2154) to SDV-2154B)	45.5%	Jet fire with pool fire from early ignition (78%) Delayed pool fire with flash fire (22%)
		16_KA19_04_CONPIP_L_71 mm (Hydrocarbon liquid from SDV-2154B (from Wellhead Knockout (V-2154)) to Condensate Pipeline)	33.8%	Jet fire with pool fire from early ignition (76%) Delayed pool fire with flash fire (24%)

Table 6-6: Risk Contributors to Selected Locations for KA-19 (Sensitivity Case)

KAPUNI WELLSITES QUANTITATIVE RISK ASSESSMENT

Point	LSIR (per year)	Contributor	% Contribution	Consequence
В	5.44E-07	06_KA19_02_WLHKOB_L_85 mm (Hydrocarbon liquid from Wellhead Knockout (V-2154) to SDV-2154B)	61.3%	Jet fire with pool fire from early ignition (78%) Delayed pool fire with flash fire (22%)
		16_KA19_04_CONPIP_L_71 mm (Hydrocarbon liquid from SDV-2154B (from Wellhead Knockout (V-2154)) to Condensate Pipeline)	38.7%	Jet fire with pool fire from early ignition (69%) Delayed pool fire with flash fire (31%)
с	2.78E-06	06_KA19_02_WLHKOB_L_85 mm (Hydrocarbon liquid from Wellhead Knockout (V-2154) to SDV-2154B)	32.9%	Jet fire with pool fire from early ignition (68%) Delayed pool fire with flash fire (32%)
		16_KA19_04_CONPIP_L_71 mm (Hydrocarbon liquid from SDV-2154B (from Wellhead Knockout (V-2154)) to Condensate Pipeline)	27.8%	Delayed pool fire with flash fire (68%) Jet fire with pool fire from early ignition (32%)
D	9.95E-07	27_KA19_09_KA4GPL_V_194 mm (Dry gas pipeline)	38.8%	Immediate jet fire (100%)
		29_KA19_11_KIWICO_V_194 mm (KGTP Treated Gas to export pipeline (to Kiwi Dairy Co. & Taranaki Byproduct Co.))	27.6%	Immediate jet fire (97%) Delayed flash fire (3%)
		06_KA19_02_WLHKOB_L_85 mm (Hydrocarbon liquid from Wellhead Knockout (V-2154) to SDV-2154B)	21.4%	Jet fire with pool fire from early ignition (91%) Delayed pool fire with flash fire (9%)
		16_KA19_04_CONPIP_L_71 mm (Hydrocarbon liquid from SDV-2154B (from Wellhead Knockout (V-2154)) to Condensate Pipeline)	11.6%	Delayed pool fire with flash fire (87%) Jet fire with pool fire from early ignition (13%)

The risk contributors for the sensitivity case are largely consistent with the base case, except at point D (at the west side of the wellsite) where the risks are also contributed by jet fires from the export pipelines.

It should be noted that Safeti cannot consider the effect of the obstacles / objects located along the way where the heat is radiated from the release source. In reality heat may be shielded by some process equipment / piping before extending offsite. Safeti also cannot consider the ground topography for pool spread, instead, flat area is assumed and the pool can spread until it reaches a bund wall or the pool formed minimum thickness (normally 5 mm).

7. WELLSITE KA-2

7.1 Release Scenarios

The P&IDs showing the isolatable sections for KA-2 are presented in Appendix 2. Table 7-1 details the section description and the respective operating conditions that are used in the QRA. There are no sensitivity cases for this wellsite.

No.	Section ID	Description	Material / Stream ^{Note 1}	Pressure (barg)	Temp. (°C)	Largest Connection Size (mm)	Section Inventory (m ³)	Isolatable Inventory (m ³)
1	01_KA02_01_WLHEAD_V	Wellstream fluid from KA-02 wellhead to XSV-0200C	1	31.74	43.72		Unlimit	ed ^{Note 2}
2	02_KA02_02_FLWLNE_V	Wellstream fluid from XSV-0200C to XSV-0200A	1	31.74	43.72	100	0.1	0.1
3	03_KA02_03_FLWLNE_V	Wellstream fluid from XSV-0200A to Wellstream Coolers (E-2210 & E- 2260)	1	31.74	43.72	150	1.1	75.8
4	04_KA02_03_WSCOL1_V	Wellstream fluid from Wellstream Cooler (E-2210) to Gas/Condensate Exchanger (E-0201A)	2	31.64	24	150	1.4	75.8
5	05_KA02_03_WSCOL2_V	Wellstream fluid from Wellstream Cooler (E-2260) to Gas/Condensate Exchanger (E-0201A)	2	31.64	24	150	1.7	75.8
6	06_KA02_03_GCEXCT_V	Hydrocarbon gas from Gas/Condensate Exchanger (E-0201A) (tube side) to LT Separator (V-0202A)	2	31.64	24	150	1.1	75.8
7	07_KA02_03_LTSEPR_V	Wellstream fluid from LT Separator (V-0202A) to HP Knockout (V-201A)	2	31.64	24	150	0.1	75.8
8	08_KA02_03_HPKNOT_V	Hydrocarbon gas from HP Knockout (V-0201A) to Gas/Gas Exchanger (E-0202A)	2	31.64	24	150	0.9	75.8
9	09_KA02_03_HPKNOB_L	Hydrocarbon liquid from HP Knockout (V-0201A) to Secondary Knockout (V-0204A)	3 Note 4	18.96	30	-	-	-
10	10_KA02_03_SCDKOT_V	Hydrocarbon gas from Secondary Knockout (V-0204A) to LT Separator (V-0202A)	2	31.64	24	50	1.0	75.8

Table 7-1: Release Scenarios and Operating Conditions for KA-2

KAPUNI WELLSITES QUANTITATIVE RISK ASSESSMENT

No.	Section ID	Description	Material / Stream ^{Note 1}	Pressure (barg)	Temp. (°C)	Largest Connection Size (mm)	Section Inventory (m ³)	Isolatable Inventory (m ³)
11	11_KA02_03_SCDKOB_L	Hydrocarbon liquid from Secondary Knockout (V-0204A) to Gas/Condensate Exchanger (E-0201A)	3 Note 4	18.96	30	-	-	-
12	12_KA02_03_GGEX1T_V	Hydrocarbon gas from Gas/Gas Exchanger (E-0202A) (tube side) to Gas/Gas Exchanger (E-0203A)	2	31.64	24	150	1.1	75.8
13	13_KA02_03_GGEX2T_V	Hydrocarbon gas from Gas/Gas Exchanger (E-0203A) (tube side) to LT Separator (V-0202A)	2	31.64	24	150	1.1	75.8
14	14_KA02_03_LTSEPT_V	Hydrocarbon gas from LT Separator (V-0202A) to Gas/Gas Exchanger (E-0203A)	4	22.8	14.21	150	2.3	75.8
15	15_KA02_03_GGEX1S_V	Hydrocarbon gas from Gas/Gas Exchanger (E-0203A) (shell side) to Gas/Gas Exchanger (E-0202A)	4	22.8	14.21	150	1.1	75.8
16	16_KA02_03_GGEX2S_V	Hydrocarbon gas from Gas/Gas Exchanger (E-0202A) (shell side) to gas export pipeline	5	22.56	22.4	200	61.7 Note 3	75.8
17	17_KA02_03_LTSEPB_L	Hydrocarbon liquid from LT Separator (V-0202A) to Gas/Condensate Exchanger (E-0201A)	3 Note 4	18.96	30	-	-	-
18	18_KA02_03_GCEXCS_L	Hydrocarbon liquid from Gas/Condensate Exchanger (E-0201A) (shell side) to condensate export pipeline	3 Note 4	18.96	30	-	-	-
19	19_KA02_03_FGKPOT_V	Hydrocarbon gas from PCV-0216A through Fuel Gas KO Pot (V-0203A) and Instrument Gas Receiver (V-0205A) to XSV-0203A	5	7	22.4	40	0.1	75.8
20	20_KA02_04_FUELGS_V	Fuel gas from XSV-0203A to Inhibitor Pumps (P-0202A/B/C) and Methanol Pump (P-0203)	5	7	22.4	25	0.03	0.03
21	21_KA02_03_GASPIG_V	Gas Scraper Trap (A-0103) to A-0503	5	22.56	22.4	200	1.0	75.8
22	22_KA02_03_CONPIG_L	Condensate Scraper Trap (A-0101B) to A-0501A	3 Note 4	18.96	30	-	-	-
23	23_KA02_05_METTNK_L	Methanol Tank (T-0203) to Methanol Pump (P-0203)	Methanol	Atm.	Amb.	25	2.2	2.2

Notes:

- 1. Stream composition refers to the stream numbers in the HMB. The full HMB for all wellsites is attached Appendix 8.
- 2. Inventory from the wellhead section is considered to be unlimited because they can be supplied from the downhole reservoir.
- 3. Sections connecting to the pipeline inventories due to the lack of isolation valve.
- 4. Stream 3 is constituting of high water content (% water cut is >125%) and is not considered as flammable. Hence these sections are not considered in the QRA.

7.2 Release Frequency

The leak frequencies for the process releases are estimated for each representative hole size using parts count results and the historical leak frequencies. The leak frequencies for KA-2 sections are shown in Table 7-2.

No	QRA Event	1 - 3 mm	3 - 10 mm	10 - 50 mm	50 - 150 mm	> 150 mm	TOTAL	% Contrib.
1	01_KA02_01_WLHEAD_V	3.37E-05	1.38E-05	5.67E-06	1.84E-06		5.50E-05	0.2%
	KA02 Blowout				4.20E-05		4.20E-05	0.2%
2	02_KA02_02_FLWLNE_V	4.33E-04	1.88E-04	9.75E-05	1.16E-05		7.30E-04	2.8%
3	03_KA02_03_FLWLNE_V	6.85E-04	2.92E-04	1.55E-04	8.31E-06	1.44E-06	1.14E-03	4.4%
4	04_KA02_03_WSCOL1_V	1.10E-03	3.99E-04	1.59E-04	2.95E-05	3.91E-07	1.69E-03	6.5%
5	05_KA02_03_WSCOL2_V	1.37E-03	5.11E-04	2.18E-04	3.01E-05	5.22E-07	2.13E-03	8.2%
6	06_KA02_03_GCEXCT_V	6.05E-04	3.22E-04	1.98E-04	1.14E-04	3.85E-07	1.24E-03	4.8%
7	07_KA02_03_LTSEPR_V	2.93E-04	1.27E-04	6.53E-05	6.06E-06	1.65E-06	4.93E-04	1.9%
8	08_KA02_03_HPKNOT_V	6.34E-04	2.86E-04	1.53E-04	3.44E-05	3.85E-07	1.11E-03	4.3%
9	09_KA02_03_HPKNOB_L			Λ	lot flammabl	e		
10	10_KA02_03_SCDKOT_V	6.75E-04	3.04E-04	1.63E-04	3.81E-05		1.18E-03	4.6%
11	11_KA02_03_SCDKOB_L			Λ	lot flammabl	e		
12	12_KA02_03_GGEX1T_V	6.96E-04	3.58E-04	2.17E-04	1.12E-04	3.85E-07	1.38E-03	5.3%
13	13_KA02_03_GGEX2T_V	8.90E-04	4.39E-04	2.45E-04	1.26E-04	3.85E-07	1.70E-03	6.6%
14	14_KA02_03_LTSEPT_V	1.10E-03	4.93E-04	2.64E-04	4.57E-05	2.91E-06	1.91E-03	7.4%
15	15_KA02_03_GGEX1S_V	1.01E-03	4.80E-04	2.36E-04	1.04E-04	3.85E-07	1.83E-03	7.1%
16	16_KA02_03_GGEX2S_V	2.62E-03	1.19E-03	6.14E-04	1.52E-04	4.96E-06	4.58E-03	17.7%
17	17_KA02_03_LTSEPB_L			Λ	lot flammabl	e		
18	18_KA02_03_GCEXCS_L			Λ	lot flammabl	e		
19	19_KA02_03_FGKPOT_V	1.39E-03	6.61E-04	4.84E-04			2.54E-03	9.8%
20	20_KA02_04_FUELGS_V	9.12E-04	3.91E-04	2.28E-04			1.53E-03	5.9%
21	21_KA02_03_GASPIG_V	1.12E-06	5.81E-07	3.21E-07	8.28E-08	2.65E-08	2.14E-06	0.01%
22	22_KA02_03_CONPIG_L			Λ	lot flammabl	е		
23	23_KA02_05_METTNK_L	2.97E-04	1.26E-04	7.22E-05	5.00E-06	5.00E-06	6.05E-04	2.3%
	TOTAL	1.47E-02	6.68E-03	3.57E-03	8.62E-04	1.88E-05	2.59E-02	
	% Contribution	57%	26%	14%	3%	0.07%		

Table 7-2: H	vdrocarbon	Release	Frequencies	for KA-2
10010 7 2.11	yarocarbon	nereuse	ricquencies	101 101 2

The total estimated release frequency from KA-2 is 2.59E-2 per year, or equivalent to one leak every 38.6 years. Most of the leaks are predicted to be from small leaks, where 83% of the leaks are from hole sizes less than 10 mm in diameter.

7.3 Risk Results

The risk results are presented in this section. The risk contours are contributed from both flammable and toxic risks from all release scenarios based on all the hazardous materials onsite.

The only toxic risk onsite is from the methanol tank due to methanol toxicity. As the methanol tank is stored at atmospheric condition with limited inventory (2.2 m³ at maximum capacity) and bunded, the methanol toxic risk is very minor and localised. Hence no separate toxic risk contour was provided. Methanol toxic effect was modelled by using the probit method as detailed in the Assumptions Register [Ref. 5].

The risk contour for KA-2 wellsite is presented in Figure 7-1.

Figure 7-1: Risk Contour for KA-2 Wellsite

The risk assessed against the HIPAP4 criteria are summarised in Table 7-3.

LSIR	Risk Contour	HIPAP4 Land Use Criteria	Result
5E-05 / year	Blue	5E-5 / year risk contour should, as a target, be contained within the boundaries of the industrial site where applicable.	Criteria met. The 5E-05 / year risk contour is within the site boundary.
1E-6 / year	Red	1E-6 / year risk contour should not extend to residential developments, hotels, tourist resorts.	Criteria met. There are no residential developments, hotels, tourist resorts within the contour.

7.4 Risk Contributors

The risk contributors to offsite risks at selected locations (points A and B) as shown in Figure 6-2 can be identified from the QRA model.

Figure 7-2: Location Selected to Identify Risk Contributors at KA-2

The risk contributors with the risk contributors and percentage of contribution are shown in Table 7-4.

Point	LSIR (per year)	Contributor	% Contribution	Consequence
A	2.06E-06	13_KA02_03_GGEX2T_V_85mm (Hydrocarbon gas from Gas/Gas Exchanger (E- 0203A) (tube side) to LT Separator (V-0202A))	17.6%	Jet fire due to early ignition
		06_KA02_03_GCEXCT_V_85mm (Hydrocarbon gas from Gas/Condensate Exchanger (E-0201A) (tube side) to LT Separator (V-0202A))	15.8%	Jet fire due to early ignition
		16_KA02_03_GGEX2S_V_85mm (Hydrocarbon gas from Gas/Gas Exchanger (E-0203A) (shell side) to Gas/Gas Exchanger (E-0202A))	15.8%	Jet fire due to early ignition
		12_KA02_03_GGEX1T_V_85mm (Hydrocarbon gas from Gas/Gas Exchanger (E-0202A) (tube side) to Gas/Gas Exchanger (E-0203A))	15.5%	Jet fire due to early ignition
В	1.29E-06	13_KA02_03_GGEX2T_V_85mm	18.7%	Jet fire due to early ignition
		06_KA02_03_GCEXCT_V_85mm	17.2%	Jet fire due to early ignition
		12_KA02_03_GGEX1T_V_85mm	16.6%	Jet fire due to early ignition
		16_KA02_03_GGEX2S_V_85mm	10.0%	Jet fire due to early ignition

Table 7-4: Risk Contributors to Selected Locations for KA-2

The risk contributor analysis shows that the offsite risk contributors are jet fires from early ignition from large releases (85 mm) from multiple heat exchangers that are connected with the gas export pipeline, and hence sharing a large inventory. The main risk contributors at both offsite locations are the same (with slight differences in the percentage of contributions due to the equipment locations).

It should be noted that Safeti cannot consider the effect of the obstacles / objects located along the way where the heat is radiated from the release source. In reality heat may be shielded by some process equipment / piping before extending offsite. Safeti also cannot consider the ground topography for pool spread, instead, flat area is assumed and the pool can spread until it reaches a bund wall or the pool formed minimum thickness (normally 5 mm).

8. WELLSITE KA-4 AND KA-14

8.1 Release Scenarios

The P&IDs showing the isolatable sections for KA-4 and KA-14 are presented in Appendix 3. Table 8-1 details the section description and the respective operating conditions that are used in the QRA.

No.	Section ID	Description	Material / Stream ^{Note 1}	Pressure (barg)	Temp. (°C)	Largest Connection Size (mm)	Section Inventory (m ³)	Isolatable Inventory (m ³)
1	01_KA04_01_KA4WHD_V	KA-04 wellhead	37	18	17.6	100	Unlimit	ed ^{Note 2}
3	03_KA04_03_KA14WH_V	KA-14 wellhead	40	19.2	18.6	100	Unlimit	ed ^{Note 2}
5	05_KA04_05_KA14FW_V	Wellfluid from KA-14 wellhead to SDV-2430B	40	19.2	18.6	100	0.6	0.6
6	06_KA04_06_KA14CK_V	Wellfluid from SDV-2430B to the commingled line	41	18.5	18.1	150	0.0	1.4
7	07_KA04_06_KA4FLW_V	Wellfluid from KA-4 wellhead to the commingled line	38	16.2	16.1	150	1.0	1.4
8	08_KA04_06_MIXFLW_V	Mixed flow to SDV-2404A	39	18.3	13.5	100	0.4	1.4
9	09_KA04_07_METTNK_L	Methanol Tank (T-2429) to Methanol Pumps	Methanol	Atm.	Amb.	50	4.7	4.7
10	10_KA04_08_GASPPL_V	Dry gas pipeline from KA-8 Launcher A-2814 to XSV-2440A	33	17.21	30	250	18.1 Note 3	19.1
11	11_KA04_08_GASPIG_V	Scraper Launcher (A-2440)	33	17.21	30	250	1.0	19.1
		Sensitivity Case	es					
12	12_KA04_09_MTPPLN_V	From SDV-2404A to multiphase pipeline	39	18	27	100	20.8 Note 3	20.8
13	13_KA04_10_GASPLN_V	Gas pipeline from KA-8 A-2813 to KPS Receiver A-502D	33	17.21	30	150	85.8 Note 3	85.8
14	14_KA04_11_GASKA7_V	From XSV-2440A to Dry Gas Pipeline to KA-7	33	17.21	30	250	97.2 Note 3	97.2
15	15_KA04_08_GASPPL_V	Dry gas pipeline from KA-8 Launcher A-2814 to KA-4/14	33	17.21	30	250	18.1 Note 3	19.1

Table 8-1: Release Scenarios and Operating Conditions for KA-4 and KA-14

Notes:

- 1. Stream composition refers to the stream numbers in the HMB. The full HMB for all wellsites is attached Appendix 8.
- 2. Inventory from the wellhead section is considered to be unlimited because they can be supplied from the downhole reservoir.
- 3. Sections connecting to the pipeline inventories due to the lack of isolation valve.

8.2 Release Frequency

The leak frequencies for the process releases are estimated for each representative hole size using parts count results and the historical leak frequencies. The leak frequencies for KA-4 and KA-14 sections for the base case are shown in Table 6-2. The KA-14 well is only in operation for 24 hours every 10 days.

No	QRA Event	1 - 3 mm	3 - 10 mm	10 - 50 mm	50 - 150 mm	> 150 mm	TOTAL	% Contrib.
1	01_KA04_01_KA4WHD_V	3.37E-05	1.38E-05	5.67E-06	1.84E-06		5.50E-05	0.9%
	KA-04 Blowout				4.20E-05		4.20E-05	0.7%
3	03_KA04_03_KA14WH_V	3.37E-06	1.38E-06	5.67E-07	1.84E-07		5.50E-06	0.1%
	KA-14 Blowout				4.20E-06		4.20E-06	0.1%
5	05_KA04_05_KA14FW_V	3.06E-05	1.33E-05	6.71E-06	1.13E-06		5.17E-05	0.9%
6	06_KA04_06_KA14CK_V	1.40E-04	5.92E-05	3.22E-05	4.30E-07	1.26E-07	2.32E-04	3.9%
7	07_KA04_06_KA4FLW_V	1.33E-03	5.66E-04	2.98E-04	1.78E-05	2.14E-06	2.21E-03	37.1%
8	08_KA04_06_MIXFLW_V	1.01E-03	4.36E-04	2.12E-04	3.79E-05		1.70E-03	28.4%
9	09_KA04_07_METTNK_L	2.49E-04	2.18E-04	6.64E-05	2.66E-05	5.00E-06	5.65E-04	9.5%
10	10_KA04_08_GASPPL_V	6.45E-04	2.86E-04	1.51E-04	2.05E-05	3.69E-06	1.11E-03	18.5%
11	11_KA04_08_GASPIG_V	1.83E-07	9.46E-08	5.25E-08	1.35E-08	4.39E-09	3.48E-07	0.01%
	TOTAL	3.44E-03	1.59E-03	7.73E-04	1.53E-04	1.10E-05	5.97E-03	100.0%
	% Contribution	58%	20%	10%	2%	0.1%		

Table 8-2: Hydrocarbon Release Frequencies for KA-4 and KA-14 (Base Case)

The total leak frequency for KA-4 and KA-14 wellsite (for the base case) is 5.97E-03 per year, which is equivalent to one leak every 167 years. Most of the leaks are predicted to be from small leaks, where 78% of the leaks are from hole sizes less than 10 mm diameter.

The leak frequencies for KA-4 and KA-14 sections for the sensitivity case are shown in Table 8-3.

Table 8-3: Hydrocarbon Release Frequencies for KA-4 and KA-14 (Sensitivity Case)

No	QRA Event	1 - 3 mm	3 - 10 mm	10 - 50 mm	50 - 150 mm	> 150 mm	TOTAL	% Contrib.
12	12_KA04_09_MTPPLN_V	2.30E-04	9.88E-05	5.12E-05	6.01E-06		3.86E-04	4.8%
13	13_KA04_10_GASPLN_V	5.18E-04	2.22E-04	1.19E-04	6.49E-06	9.87E-07	8.66E-04	10.7%
14	14_KA04_11_GASKA7_V	6.03E-05	2.81E-05	1.43E-05	2.86E-06	8.86E-07	1.06E-04	1.3%
15	15_KA04_08_GASPPL_V	4.64E-04	2.03E-04	1.10E-04	1.01E-05	1.24E-06	7.88E-04	9.7%
то	TAL (Base Case and Sensitivity)	4.71E-03	2.14E-03	1.07E-03	1.78E-04	1.41E-05	8.12E-03	
	% Contribution	58%	26%	13%	2%	0.2%		

The total leak frequencies for KA-19 wellsite (including the sensitivity cases) is 8.12E-03 per year, which is equivalent to one leak every 123 years.

8.3 Risk Results

The risk results are presented in this section. The risk contours are contributed from both flammable and toxic risks from all release scenarios based on all the hazardous materials onsite.

The only toxic risk onsite is due to methanol toxicity from the methanol tank. As the methanol tank is stored at atmospheric condition with limited inventory (4.7 m³ at maximum capacity) and bunded, the methanol toxic risk is very minor and localised. Hence no separate toxic risk contour was provided. Methanol toxic effect was modelled by using the probit method as detailed in the Assumptions Register [Ref. 5].

8.3.1 Base Case

The base case risk contour for KA-4 and KA-14 wellsite is presented in Figure 8-1.

Figure 8-1: Risk Contour for KA-4 and KA-14 Wellsite (Base Case)

The risk assessed against the HIPAP4 criteria for the base case are summarised in Table 8-4.

LSIR	Risk Contour	HIPAP4 Land Use Criteria	Result			
5E-05 / year	Blue	5E-5 / year risk contour should, as a target, be contained within the boundaries of the industrial site where applicable.				
1E-6 / year	Red	1E-6 / year risk contour should not extend to residential developments, hotels, tourist resorts.	Criteria met. There are no residential developments, hotels, tourist resorts within the contour.			

Table 8-4: LSIR Results Assessed Against the HIPAP4 Land Use Criteria for KA-4 and KA-14 (Base Case)

8.3.2 Sensitivity Case

The risk contour for KA-4/14 wellsite sensitivity case, which include the gathering pipeline sections is presented in Figure 8-2.

Figure 8-2: Risk Contour for KA-4 and KA-14 Wellsite (Sensitivity Case)

The risk contours for the sensitivity case similar to the base case and the assessment against the HIPAP4 criteria is the same, hence is it not repeated.

8.4 Risk Contributors

For both the base case and sensitivity cases, the 5E-05 / year risk contour and the 1E-06 /year risk contour remain within the site boundary. This is due to the low operating frequencies for the KA-4 well. As the risk contours did not extend offsite, no locations were selected for risk contributor identification.

9. WELLSITE KA-5 AND KA-10

9.1 Release Scenarios

The P&IDs indication the isolatable sections presented in Appendix 4 for KA-5, which is the only producing well at this wellsite. Table 9-1 details the section description and the respective operating conditions that are used in the QRA.

No.	Section ID	Description Material / Pressure Stream Note 1 (barg)				Largest Connection Size (mm)	Section Inventory (m³)	Isolatable Inventory (m ³)
		Base Cases						
1	01_KA05_01_WLHEAD_L	Wellstream fluid from KA-05 wellhead to XSV-0500B623.3		23.3	28.13		Unlimit	ed ^{Note 2}
2	02_KA05_02_FLWLNE_L	Wellstream fluid from XSV-0500B to Desander (V-0516)	6	23.3	28.13	150	0.1	3.2 Note 4
3	03_KA05_02_DESAND_L	Wellstream fluid from Desander (V-0516) to choke valve PCV-0514A	6	23.3	28.13	150	2.4	3.2 Note 4
4	04_KA05_02_CHKLNE_L	Wellstream fluid choke valve PCV-0514A to XSV-0514A	7	18	22.33	150	0.7	3.2 Note 5
5	05_KA05_03_METHTK_L	Methanol Tank (T-0509) to Methanol Pump (P-0509)	Methanol	Atm	Amb	25	0.5	0.5
		Sensitivity Cases						
7	07_KA05_04_LIQPIP_L	Wellstream fluid from XSV-0514A mix with condensate from A-2614 to liquid pipeline to KA-13 and KPS81821150		1.9	57.4 Note 3, 6			
8	08_KA05_05_KA6PPL_V	Gas from KA-6 & KA-11 passing through KA-5 to KA-13 and KPS 13 20.71 22.93 250		250	5.2	158.1 Note 3		

Table 9-1: Release Scenarios and Operating Conditions for KA-5

Notes:

1. Stream composition refers to the stream numbers in the HMB. The full HMB for all wellsites is attached Appendix 8.

2. Inventory from the wellhead section is considered to be unlimited because they can be supplied from the downhole reservoir.

3. Sections connecting to the pipeline inventories due to the lack of isolation valve.

KAPUNI WELLSITES QUANTITATIVE RISK ASSESSMENT

- 4. Inventories for modelling the 6 mm leak was increased to 133 kg, 1,791 kg for 22 mm and 26,728 kg for 85 mm leak, assuming the delayed detection and isolation of 15 min (i.e., the releases can sustain up to 15 min). This is conservatively assumed that the leaks can sustain at initial pressure with no depressurisation at the system.
- 5. Inventories for modelling the 6 mm leak was increased to 103 kg, 1,388 kg for 22 mm and 20,714 Inventory for modelling the 85 mm leak was increased to 24,839 kg, assuming the delayed detection and isolation of 15 min (i.e., the releases can sustain up to 15 min). This is conservatively assumed that the leak can sustain at initial pressure with no depressurisation at the system.
- 6. Inventory for modelling the 85 mm leak was increased to 21,428 kg, assuming the delayed detection and isolation of 15 min (i.e., the releases can sustain up to 15 min). This is conservatively assumed that the leaks can sustain at initial pressure with no depressurisation at the system.

9.2 Release Frequency

The leak frequencies for the process releases are estimated for each representative hole size using parts count results and the historical leak frequencies. The leak frequencies for KA-5 sections for the base case are shown in Table 9-2.

No	QRA Event	1 - 3 mm	3 - 10 mm	10 - 50 mm	50 - 150 mm	> 150 mm	TOTAL	% Contrib.
1	01_KA05_01_WLHEAD_L	3.37E-05	1.38E-05	5.67E-06	1.13E-06	7.09E-07	3.37E-05	1.1%
	KA-05 Blowout					4.20E-05	4.20E-05	0.9%
2	02_KA05_02_FLWLNE_L	5.97E-04	2.50E-04	1.34E-04	2.04E-06	4.47E-07	5.97E-04	20.4%
3	03_KA05_02_DESAND_L	8.91E-04	4.14E-04	2.21E-04	6.15E-05	2.63E-06	8.91E-04	33.0%
4	04_KA05_02_CHKLNE_L	8.30E-04	3.56E-04	1.88E-04	1.24E-05	2.75E-06	8.30E-04	28.9%
5	05_KA05_03_METHTK_L	4.45E-04	2.93E-04	1.17E-04	5.00E-06	5.00E-06	8.69E-04	15.7%
	TOTAL	2.80E-03	1.33E-03	6.65E-04	8.21E-05	5.35E-05	4.92E-03	100.0%
	% Contribution	57%	27%	14%	2%	1%		

Table 9-2: Hydrocarbon Release Frequencies for KA-5 (Base Case)

The total leak frequency for KA-5 wellsite (for the base case) is 4.92E-03 per year, which is equivalent to one leak every 208 years. Most of the leaks are predicted to be from small leaks, where 86% of the leaks are from hole sizes less than 10 mm diameter.

The leak frequencies for KA-5 sections for the sensitivity case are shown in Table 9-3.

No	QRA Event	1 - 3 mm	3 - 10 mm	10 - 50 mm	50 - 150 mm	> 150 mm	TOTAL	% Contrib.
7	07_KA05_04_LIQPIP_L	7.27E-04	3.09E-04	1.65E-04	8.32E-06	1.39E-06	1.21E-03	17.3%
8	08_KA05_05_KA6PPL_V	5.12E-04	2.27E-04	1.22E-04	1.72E-05	2.99E-06	8.80E-04	12.6%
TOTA	AL (Base Case and Sensitivity)	4.03E-03	1.86E-03	9.51E-04	1.08E-04	5.79E-05	7.01E-03	
	% Contribution	58%	27%	14%	2%	0.8%		

Table 9-3: Hydrocarbon Release Frequencies for KA-5 (Sensitivity Case)

The total leak frequency for KA-5 wellsite (including the sensitivity cases) is 7.01E-03 per year, which is equivalent to one leak every 143 years.

9.3 Risk Results

The risk results are presented in this section. The risk contours are contributed from both flammable and toxic risks from all release scenarios based on all the hazardous materials onsite.

The only toxic risk onsite is due to methanol toxicity from the methanol tank. As the methanol tank is stored at atmospheric condition with limited inventory (0.5 m³ at maximum capacity) and bunded, the methanol toxic risk is very minor and localised. Hence no separate toxic risk contour was provided. Methanol toxic effect was modelled by using the probit method as detailed in the Assumptions Register [Ref. 5].

9.3.1 Base Case

The base case risk contour for KA-5 and KA-10 wellsite is presented in Figure 9-1.

Figure 9-1: Risk Contour for KA-5 and KA-10 Wellsite (Base Case)

The risk assessed against the HIPAP4 criteria for the base case are summarised in Table 9-4.

Table 9-4: LSIR Results Assessed Against the HIPAP4 Land Use Criteria for KA-5 and KA-10 (Base Case)

LSIR	Risk Contour	HIPAP4 Land Use Criteria	Result		
5E-05 / year	Blue	5E-5 / year risk contour should, as a target, be contained within the boundaries of the industrial site where applicable.	Criteria met. The 5E-05 / year risk contour is within the site boundary.		
1E-6 / year	Red	1E-6 / year risk contour should not extend to residential developments, hotels, tourist resorts.	Criteria met. There are no residential developments, hotels, tourist resorts within the contour.		

9.3.2 Sensitivity Case

The risk contour for KA-5 and KA-10 wellsite sensitivity case, which include the gathering pipeline sections is presented in Figure 9-2.

Figure 9-2: Risk Contour for KA-5 and KA-10 Wellsite (Sensitivity Case)

The risk contours for the sensitivity case are slightly larger compared to the base case due to the additional sections, however the assessment against the HIPAP4 criteria is the same. Hence is it not repeated.

9.4 Risk Contributors

For both the base case and sensitivity cases, the 5E-05 / year risk contour and the 1E-06 /year risk contour remain within the site boundary. This is because there is only very limited equipment onsite. As the risk contours did not extend offsite, no locations were selected for risk contributor identification.

10. WELLSITE KA-6, KA-11 AND KA-17

10.1 Release Scenarios

The P&IDs indication the isolatable sections presented in Appendix 5 for KA-6 and KA-17, which are the producing wells at this wellsite. The wellsite modification from CUSP Phase 3 has been considered in this revision of the report, which include the bypass of the High Pressure Knockout vessel (V-2654) and the installation of new header. V-2654 is currently isolated and will be permanently disconnected from process as part of the execution of the project, which the vessel may remain on site post CUSP until permanently demolished and removed. If the vessel were to be brought back into operation, it will require a consent and the QRA will be updated.

Table 10-1 details the section description and the respective operating conditions that are used in the QRA.

No.	Section ID	Description	Material / Stream ^{Note 1}	Pressure (barg)	Temp. (°C)	Largest Connection Size (mm)	Section Inventory (m ³)	Isolatable Inventory (m ³)
1	01_KA06_01_WLHEAD_V	Wellstream fluid from KA-06 wellhead to XSV-2600	9	36.5	28.18	150	Unlimit	ed ^{Note 2}
2	02_KA17_02_WLHEAD_V	Wellstream fluid from KA-17 wellhead to XSV-2680A	14	22	29.82	150	Unlimit	ed Note 2
3	03_KA06_03_DESAND_V	Wellstream fluid from XSV-2600 through KA-6 Desander (V-2601) to Wellstream Cooler (E-2651)	9	36.5	28.2	150	2.5	11.0
4	04_KA17_03_DESAND_V	Wellstream fluid from XSV-2680A through KA-17 Desander (V-2682) to condensate pipeline	14	22	29.8	150	3.0	11.0
6	06_KA06_03_WSCOOL_V	Wellstream fluid from Wellstream Cooler (E-2651) to gas pipeline	9	36.5	28.2	150	1.4	11.0
7	07_KA06_03_GASPLN_V	Wellstream fluid from Wellstream Cooler (E-2651) to XSV-2671A to gas pipeline	9	36.5	28.2	250	1.5	11.0
8	08_KA06_03_CONPLN_L	Wellstream fluid from KA-17 well to XSV-2672A	14	22	29.8	150	0.5	11.0 Note 4
9	09_KA06_03_GASPIG_V	Scraper Trap (A-2613) on gas gathering pipeline	9	36.5	28.2	250	1.1	11.0
10	10_KA06_03_CONPIG_L	Scraper Trap (A-2614) on condensate gathering pipeline	14	22	29.8	150	1.0	11.0 Note 4
12	12_KA06_04_METNK2_L	Methanol Tank (T-2609) to Methanol Pumps (P-2609A & C)	Methanol	Atm.	Amb.	50	2.2	2.2

Table 10-1: Release Scenarios and Operating Conditions for KA-6 and KA-17

No.	Section ID	Description	Material / Stream ^{Note 1}	Pressure (barg)	Temp. (°C)	Largest Connection Size (mm)	Section Inventory (m ³)	Isolatable Inventory (m ³)
	Sensitivity Cases							
14	14_KA06_05_GASPLN_V	Gas pipeline to KA-05	9	36.5	28.2	250	152.9 Note 3	152.9
15	15_KA06_06_CONPLN_L	Condensate pipeline to KA-05	14	22	29.8	150	55.5 Note 3	55.5 Note 5

Notes:

- 1. Stream composition refers to the stream numbers in the HMB. The full HMB for all wellsites is attached Appendix 8.
- 2. Inventory from the wellhead section is considered to be unlimited because they can be supplied from the downhole reservoir.
- 3. Sections connecting to the pipeline inventories due to the lack of isolation valve.
- 4. Inventories for modelling the 22 mm leak was increased to 1,664 kg, and 24,839 kg for 85 mm leak, assuming the delayed detection and isolation of 15 min (i.e., the releases can sustain up to 15 min). This is conservatively assumed that the leaks can sustain at initial pressure with no depressurisation at the system.
- 5. Inventory for modelling the 85 mm leak was increased to 24,839 kg, assuming the delayed detection and isolation of 15 min (i.e., the releases can sustain up to 15 min). This is conservatively assumed that the leak can sustain at initial pressure with no depressurisation at the system.

10.2 Release Frequency

The leak frequencies for the process releases are estimated for each representative hole size using parts count results and the historical leak frequencies. The leak frequencies for KA-6 and KA-17 sections for the base case are shown in Table 10-2.

No.	QRA Event	1 - 3 mm	3 - 10 mm	10 - 50 mm	50 - 150 mm	> 150 mm	TOTAL	% Contrib.
1	01_KA06_01_WLHEAD_V	3.37E-05	1.38E-05	5.67E-06	1.13E-06	7.09E-07	5.50E-05	0.3%
	KA-06 Blowout					4.20E-05	4.20E-05	0.3%
2	02_KA17_02_WLHEAD_V	3.37E-05	1.38E-05	5.67E-06	1.13E-06	7.09E-07	5.50E-05	0.4%
	KA-17 Blowout					4.20E-05	4.20E-05	0.4%
3	03_KA06_03_DESAND_V	2.09E-03	9.26E-04	4.97E-04	7.38E-05	4.39E-06	3.59E-03	26.6%
4	04_KA17_03_DESAND_V	1.90E-03	8.51E-04	4.58E-04	7.86E-05	4.17E-06	3.30E-03	24.4%
6	06_KA06_03_WSCOOL_V	1.57E-03	5.98E-04	2.67E-04	3.14E-05	8.95E-07	2.46E-03	18.2%
7	07_KA06_03_GASPLN_V	8.40E-04	3.76E-04	2.03E-04	3.56E-05	4.22E-06	1.46E-03	10.8%
8	08_KA06_03_CONPLN_L	1.01E-03	4.41E-04	2.40E-04	1.79E-05	2.72E-06	1.71E-03	12.7%
9	09_KA06_03_GASPIG_V	1.14E-06	5.93E-07	3.29E-07	8.87E-08	2.65E-08	2.18E-06	0.02%
10	10_KA06_03_CONPIG_L	1.13E-06	5.86E-07	3.25E-07	1.62E-07	5.27E-11	2.20E-06	0.02%
12	12_KA06_04_METNK2_L	3.82E-04	2.74E-04	1.19E-04	5.00E-06	5.00E-06	7.85E-04	5.8%
	TOTAL	7.86E-03	3.49E-03	1.80E-03	2.45E-04	1.07E-04	1.35E-02	100.0%
	% Contribution	58%	26%	13%	1.8%	0.8%		

Table 10-2: Hydrocarbon Release Frequencies for KA-6 and KA-17 (Base Case)

The total leak frequency for KA-6/17 wellsite (for the base case) is 1.35E-02 per year, which is equivalent to one leak every 74 years. Most of the leaks are predicted to be from small leaks, where 84% of the leaks are from hole sizes less than 10 mm diameter.

The leak frequencies for KA-6 and KA-17 sections for the sensitivity case are shown in Table 10-3.

Table 10 2. Hudro sauban	Deleves Freedores	for KA C (Constitute Cons)
Table 10-3: Hydrocarbon	Release Frequencies	s for KA-6 (Sensitivity Case)

No	QRA Event	1 - 3 mm	3 - 10 mm	10 - 50 mm	50 - 150 mm	> 150 mm	TOTAL	% Contrib.
14	14_KA06_05_GASPLN_V	7.53E-05	3.61E-05	1.89E-05	5.56E-06	8.86E-07	1.37E-04	1.0%
15	15_KA06_06_CONPLN_L	5.93E-05	2.46E-05	1.07E-05	1.76E-06	3.85E-07	9.67E-05	0.7%
тоти	AL (Base Case and Sensitivity)	8.00E-03	3.56E-03	1.83E-03	2.52E-04	1.08E-04	1.37E-02	
	% Contribution	58%	26%	13%	2%	0.8%		

The total leak frequency for KA-6/17 wellsite (including the sensitivity cases) is 1.37E-02 per year, which is equivalent to one leak every 73 years.

10.3 Risk Results

The risk results are presented in this section. The risk contours are contributed from both flammable and toxic risks from all release scenarios based on all the hazardous materials onsite.

The only toxic risk onsite is due to methanol toxicity from the methanol tank. As the methanol tank is stored at atmospheric condition with limited inventory (2.2 m³ at maximum capacity) and bunded, the methanol toxic risk is very minor and localised. Hence no separate toxic risk contour was provided. Methanol toxic effect was modelled by using the probit method as detailed in the Assumptions Register [Ref. 5].

10.3.1 Base Case

The base case risk contour for KA-6/17 wellsite is presented in Figure 10-1.

Figure 10-1: LSIR Contours for KA-6/17 Wellsite (Base Case)

The risk assessed against the HIPAP4 criteria are summarised in Table 10-4.

Table 10-4: LSIR Results Assessed Against the HIPAP4 Land Use Criteria for KA-6/17 (Base Case)

LSIR	Risk Contour	HIPAP4 Land Use Criteria	Result
5E-05 / year	Blue	5E-5 / year risk contour should, as a target, be contained within the boundaries of the industrial site where applicable.	Criteria met. The risk level is lower than 5E-05 / year.
1E-6 / year	Red	1E-6 / year risk contour should not extend to residential developments, hotels, tourist resorts.	Criteria met. There are no residential developments, hotels, tourist resorts within the contour.

10.3.2 Sensitivity Case

The LSIR for KA-6/17 wellsite sensitivity case, which include the gathering pipeline sections is presented in Figure 10-2.

Figure 10-2: LSIR Contours for KA-6/17 Wellsite (Sensitivity Case)

The risk contours for the sensitivity case are slightly larger compared to the base case due to the additional sections, however the assessment against the HIPAP4 criteria is the same. Hence is it not repeated.

10.4 Risk Contributors

The risk contributors to offsite risks at selected location (point A) as shown in Figure 6-2 can be identified from the QRA model.

Figure 10-3: Location Selected to Identify Risk Contributors at KA-6/17 wellsite

10.4.1 Base Case

The risk contributors for the base case with the risk contributors and percentage of contribution are shown in Table 10-5.

Point	LSIR (per year)	Contributor	% Contribution	Consequence
А	1.83E-06	07_KA06_03_GASPLN_V_85 mm (horizontal release)	44.1%	Fireball from early ignition
		(Wellstream fluid from Wellstream Cooler (E- 2651) to gas export pipeline)		
		07_KA06_03_GASPLN_V_85 mm (vertical release)	18.9%	Fireball from early ignition
		(Wellstream fluid from Wellstream Cooler (E- 2651) to gas export pipeline)		
		07_KA06_03_GASPLN_V_194 mm (horizontal release)	18.4%	Fireball from early ignition (96%)
		(Wellstream fluid from Wellstream Cooler (E- 2651) to gas export pipeline)		Flash fire from delayed ignition (4%)

Table 10-5: Risk Contributors to Selected Locations for KA-6/17 (Base Case)

The risk contributor analysis shows that the offsite risk contributors are contributed by one scenario, which is the wellstream fluid from the Wellstream Cooler (E-2651) to the gas export pipeline isolation valve from large releases. This is because the leak frequency from this section is relatively high (contributed 10.8% to the total wellsite leak frequency) and the equipment are close to the boundary at the north.

10.4.2 Sensitivity Case

The risk contributors for the sensitivity case with the risk contributors and percentage of contribution are shown in Table 10-6.

Point	LSIR (per year)	Contributor	% Contribution	Consequence
A	1.86E-06	07_KA06_03_GASPLN_V_85 mm (horizontal release)	43.4%	Fireball from early ignition
		(Wellstream fluid from Wellstream Cooler (E- 2651) to gas export pipeline)		
		07_KA06_03_GASPLN_V_85 mm (vertical release)	18.6%	Fireball from early ignition
		(Wellstream fluid from Wellstream Cooler (E- 2651) to gas export pipeline)		
		07_KA06_03_GASPLN_V_194 mm (horizontal release)	18.1%	Fireball from early ignition (96%)
		(Wellstream fluid from Wellstream Cooler (E- 2651) to gas export pipeline)		Flash fire from delayed ignition (4%)

 Table 10-6: Risk Contributors to Selected Locations for KA-6/17 (Sensitivity Case)

The risk contributors for the sensitivity case are almost consistent with the base case, where the offsite risk contributors are contributed the same scenario, which is the which is the wellstream fluid from the Wellstream Cooler (E-2651) to the gas export pipeline isolation valve from large release.

It should be noted that Safeti cannot consider the effect of the obstacles / objects located along the way where the heat is radiated from the release source. In reality heat may be shielded by some process equipment / piping before extending offsite.

11. WELLSITE KA-8, KA-12, KA-15 AND KA-18

11.1 Release Scenarios

The P&IDs indication the isolatable sections presented in Appendix 6 for KA-8 and KA-18, which are the producing wells at this wellsite. The wellsite modification from CUSP Phase 3 has been considered in this revision of the report, which include the installation of two slug catcher pumps (P-28201/28202). Table 11-1 details the section description and the respective operating conditions that are used in the QRA.

No.	Section ID	Description	Material / Stream ^{Note 1}	Pressure (barg)	Temp. (°C)	Largest Connection Size (mm)	Section Inventory (m ³)	Isolatable Inventory (m ³)
1	01_KA08_01_WLHEAD_V	Wellstream fluid from KA-08 wellhead (XSV-2801) to XSV-2820	28	23.83	28.09	100	Unlimit	ed ^{Note 2}
2	02_KA08_02_FLWLNE_V	Wellstream fluid from XSV-2820 (KA-08) to XCV-2858E, XCV-2858D, XCV-2858C, XCV-2840C, XCV-2840E, XCV-2840F and XSV-2800	28	23.83	28.09	150	150 1.65 :	
3	03_KA18_03_WLHEAD_V	Wellstream fluid from KA-18 wellhead (XSV-2850A) to SDV-2850B	21	29.68	34.01	100	Unlimit	ed ^{Note 2}
4	04_KA18_04_CHKLNE_V	Wellstream fluid from SDV-2850b to choke valve HCV-2850A	21	29.68	34.01	150 0.10		0.21
5	05_KA18_04_CHKLNE_V	Wellstream fluid from choke valve HCV-2850A to XCV2840D and XCV-2840F	22	22.06	30.76	150	150 0.11	
6	06_KA18_05_SLGCAT_V	Wellstream fluid from XCV-2840D to Slug Catcher (V-2858) and SDV-2858A and HCV2858A	23	19.5	21.54	250	2.62	34.30
7	07_KA18_05_SLGCAT_V	Vapour from Slug Catcher (V-2858) to Separators V-9010 and V-9020, XCV-2858E and XCV-2858C	27	19.52	21.54	250	31.68	34.30
8	08_KA08_06_COMGAS_V	Compressed Gas from Compressors A-9101 and A-9201 (from SDV- 9101G, SDV-9201G, XCV-2840E, XCV-2858D) to SDV-2808A and XCV- 2840C	32	51.67	34.50	150	3.57	3.57

Table 11-1: Release	Scenarios and	Operating	Conditions	for KA-8 and KA-18
10010 11 11010000		operating	00110110110	<i>jet to to ante to t</i>

No.	Section ID	Description	Material / Stream ^{Note 1}	Pressure (barg)	Temp. (°C)	Largest Connection Size (mm)	Section Inventory (m ³)	Isolatable Inventory (m ³)
9	09_KA18_07_WGSLTS_V	Wet Gas from XSV-2863A, TCV-2808B, Gas Exchangers E-2801/2 and LTS Vessel V-2804 and Pig Receiver (A-2863) to SDV-2858A and HCV-2858A, Pig Launchers A-2913 and A2814 and through Fuel Gas Heater E-9030 to SDV-9030A	13	39.17	15.25	150	6.18	15.52
10	10_KA18_07_PIGL13_V	Pig Launcher A-2813	33(2)	39.05	26.45	150	1.02	15.52
11	11_KA18_07_PIGL14_V	Pig Launcher A-2814	33(2)	39.05	26.45	100	0.01	15.52
12	12_KA08_07_GASEXC_V	Hydrocarbon Gas from XSV-2800 through Tube side Gas/condensate exchanger E-2800, though LTS vessel V-2804 to HPKO V-2803	32	51.67	34.50	150	0.73	15.52
13	13_KA08_07_HPKOGS_V	Hydrocarbon Gas from HP KO V-2803 to PCVs 2804A/E	40	51.17	23.74	150	2.94	15.52
14	14_KA08_07_CLSSFR_L	Hydrocarbon Liquid from HP KO V-2803 through Classifier V-2805 to LCV-2805 $^{\rm Note4}$	38	39.17	34.00	-	-	-
15	15_KA08_07_CONEXC_L	Hydrocarbon Liquid from LTS V-2804 and LCV-2805 to TICV-2804A	46	39.15	20.00	50	2.24	15.52
16	16_KA18_08_LPIG64_L	Wellstream liquids from SDV-2808C and SDV-2858B to Pig Launcher A-2864	33	17.21	30.00	100	0.31	26.08
17	17_KA18_08_LPIG64_L	Pig Launcher A-2864	33	17.21	30.00	100	1.01	26.08
18	18_KA08_09_SEPRTR_V	Hydrocarbon Gas from Separator V-9010 to shut down valves SDV-9101C/D	31	19.43	22.18	200	4.68	8.41
19	19_KA08_09_SEPRTR_L	Hydrocarbon Liquid from Separator V-9010 to SDV-9015C Note 4	30	19.43	22.18	-	-	-
20	20_KA08_09_BLWCSE_L	Hydrocarbon liquid from SDV-9141C to Separator V-9010 Note 4	-	-	_	-	-	-
21	21_KA08_09_PUMPBP_L	Hydrocarbon Liquid from SDV-9015C through P-9015 to SDV-9015A Note 4	30	19.43	22.18	-	-	-
22	22_KA08_09_BLWCSE_V	Hydrocarbon gas from SDVs SDV-9101H, SDV-9141B, SDV-9141A through Blowcase V-9141 to Suction Scrubber V-9111	32	51.67	34.50	80	0.10	8.41

KAPUNI WELLSITES QUANTITATIVE RISK ASSESSMENT

No.	Section ID	Description	Material / Stream ^{Note 1}	Pressure (barg)	Temp. (°C)	Largest Connection Size (mm)	Section Inventory (m ³)	Isolatable Inventory (m ³)
23	23_KA08_09_COOLER_V	Hydrocarbon Gas from SDV-9101C/D to suction scrubbers V-9111 & V- 9121, TCV-9101A and PCV-9101C	31	19.43	22.18	100	0.01	8.41
24	24_KA08_09_SS9111_V	Hydrocarbon Gas from Suction Scrubber V-9111 and SDV-9131A to Compressor K-9101A	31	19.43	22.18	150	1.73	8.41
25	25_KA08_09_SS9121_V	Hydrocarbon Gas from Suction Scrubber V-9121 to Compressor K- 9101B	31	19.43	22.18	150	1.69	8.41
26	26_KA08_09_COMPSR_V	Hydrocarbon Gas from Compressors K-9101A/B through Afterstage Coolers E-9131A/B to SDV-9101F, SDV-9101G, PCV-9101C and TCV- 9101A		51.67	34.50	100	0.19	8.41
27	27_KA18_10_SEPRTR_V	Hydrocarbon Gas from Separator V-9020 to shut down valves SDV- 9201C/D	31	19.43	22.18	200	4.68	6.76
28	28_KA18_10_SEPRTR_L	Hydrocarbon Liquid from Separator V-9020 to SDV-9025C Note 4	30	19.43	22.18	-	-	-
29	29_KA18_10_BLWCSE_L	Hydrocarbon Liquid from SDV-9241C to Separator V-9020 Note 4	-	-	-	-	-	-
30	30_KA18_10_COOLER_V	Hydrocarbon Gas from SDV-9201C/D, TCV-9201A and PCV-9201C	31	19.43	22.18	150	0.01	6.76
31	31_KA18_10_SS9111_V	Hydrocarbon Gas from Suction Scrubber V-9211 and SDV-9241A to Compressor K-9201A	32	51.67	34.50	150	1.73	6.76
32	32_KA18_10_SS9101_V	Hydrocarbon Gas from Suction Scrubber V-9221 to Compressor K- 9201B	31	19.43	22.18	150	0.03	6.76
33	33_KA18_10_PUMPBP_L	Hydrocarbon Liquid from SDV-9025C through P-9025 to SDV-9025A Note 4	30	19.43	22.18	-	-	-
34	34_KA18_10_BLWCSE_V	Hydrocarbon Liquid from SDVs SDV-9201H, SDV-9241B, SDV-9241A through Blowcase V-9241 to SDV-9241C	32	51.67	34.50	50	0.10	6.76
35	35_KA18_10_COMPSR_V	Hydrocarbon Gas from Compressors K-9201A/B through Afterstage Coolers E-9231A/B to SDV-9201F, SDV-9201G, PCV-9201C and TCV- 9201A		51.67	34.50	100	0.19	6.76

No.	Section ID	Description	Material / Stream ^{Note 1}	Pressure (barg)	Temp. (°C)	Largest Connection Size (mm)	Section Inventory (m ³)	Isolatable Inventory (m ³)
36	36_KA18_07_FUELGS_V	Fuel Gas from SDV-9030A to PCVs 9030B/C	33(2)	39.05	26.45	50	0.01	15.52
37	37_KA18_07_FLGSSS_V	Fuel Gas from PCVs 9030B/C through Fuel Gas Scrubber V-9031 to SDV- 9101A and SDV-9201A	33(2)	7	26.45	80	0.13	15.52
38	38_KA08_07_FLGSEP_V	Fuel gas from SDV-9101A through fuel gas coalescing separator (F-9171) to PCV-9101D and PCV-9101E	33(2)	3.45	26.45	50	0.59	15.52
39	39_KA18_07_FLGSEP_V	Fuel Gas from SDV-9201A through fuel gas coalescing separator (F-9271) to PCV-9201D and PCV-9201E	33(2)	3.45	26.45	50	0.63	15.52
40	40_KA18_11_GASEXC_V	Dry Gas from LTS Unit B V-2080 through Gas exchangers E-2816, E-2817 and E-2818 to TCV-2808B	33(2)	39.05	26.45	150	2.41	2.41
41	41_KA18_08_LTSUNB_V	Dry Gas from PCV-2808A to LTS Unit B V-2080	33(2)	39.05	26.45	100	7.73	9.99
42	42_KA18_08_LTSUNB_L	Liquid from LTS Unit B V-2080 to SDV-2808C	33	17.21	30.00	80	7.66	26.08
43	43_KA18_08_SHLEXC_V	Gas from LTS V-2808 through Gas exchangers (E-2816/7/8) back to LTS V-2808	32	51.67	34.50	150	2.25	9.99
44	44_KA18_07_GPIG63_V	Pig Receiver A-2863	33(2)	39.05	26.45	250	1.05	15.52
45	45_KA18_14_MTHNOL_L	Methanol storage tank (T-2866) to Pumps P-2884/2876/2877/2878	Methanol	Atm.	Amb.	50	4.68	6.24
46	46_KA18_14_MT2884_L	Methanol from Pump P-2884 to KA-18	Methanol	30	14	15	0.54	6.24
47	47_KA18_14_MT2876_L	Methanol from Pump P-2876 to LTS Units 8 and B	Methanol	30	14	15	0.51	6.24
48	48_KA18_14_MT2877_L	Methanol from Pump P-2878 to LTS Unit B	Methanol	30	14	25	0.52	6.24
49	49_KA18_05_SLGCAT_L	Liquid from Slug Catcher (V-2858) to Slug Catcher Pumps (P-28201/28202) Note 4	24	19.52	21.54	-	-	-
54	47_KA18_05_SCPUMP_L	Slug Catcher Pumps (P28201/28202) to condensate pipeline Note 4	24	19.52	21.54	-	-	-

No.	Section ID	Description	Material / Stream ^{Note 1}	Pressure (barg)	Temp. (°C)	Largest Connection Size (mm)	Section Inventory (m ³)	Isolatable Inventory (m ³)
		Sensitivity Cases						
50	50_KA18_15_KA4WGP_V	Wet gas from KA-4 & 14 to XSV-2863A	33(2)	39.05	26.45	250	112.9 Note 3	112.9
51	51_KA18_16_KA4P13_V	Dry gas from XSV-2813A to wellsite KA-4	33(2)	39.05	26.45	150	38.7 Note 3	38.7
52	52_KA18_17_KA4P14_V	Dry gas from XSV-2814 to wellsite KA-4	33(2)	39.05	26.45	100	18.1 Note 3	18.1
53	53_KA18_18_KA1PPL_L	Condensate from XSV-2864A to wellsite KA-1 & 7	33	17.21	30.00	100	17.1 Note 3	17.1

Notes:

- 1. Stream composition refers to the stream numbers in the HMB. The full HMB for all wellsites is attached Appendix 8.
- 2. Inventory from the wellhead section is considered to be unlimited because they can be supplied from the downhole reservoir.
- 3. Sections connecting to the pipeline inventories due to the lack of isolation valve.
- 4. Sections are not considered in the QRA due to either the sections are Normally No Flow (NNF) or the material constituting of high water content (% water cut is >125%) and considered as not flammable (Streams 24, 30 and 38).

11.2 Release Frequency

The leak frequencies for the process releases are estimated for each representative hole size using parts count results and the historical leak frequencies. The leak frequencies for KA-8 and KA-18 sections for the base case are shown in Table 11-2.

No	QRA Event	1 - 3 mm	3 - 10 mm	10 - 50 mm	50 - 150 mm	> 150 mm	TOTAL	% Contrib.
1	01_KA08_01_WLHEAD_V	3.37E-05	1.38E-05	5.67E-06	1.84E-06		5.50E-05	0.03%
	KA-08 Blowout				4.20E-05		4.20E-05	0.02%
2	02_KA08_02_FLWLNE_V	1.73E-03	7.57E-04	3.99E-04	3.56E-05	8.21E-06	2.94E-03	1.4%
3	03_KA18_03_WLHEAD_V	3.37E-05	1.38E-05	5.67E-06	1.84E-06		5.50E-05	0.03%
	KA-18 Blowout				4.20E-05		4.20E-05	0.02%
4	04_KA18_04_CHKLNE_V	3.01E-04	1.31E-04	6.61E-05	7.13E-06	1.93E-06	5.07E-04	0.2%
5	05_KA18_04_CHKLNE_V	1.25E-03	5.33E-04	2.84E-04	1.34E-05	3.74E-06	2.08E-03	1.0%
6	06_KA18_05_SLGCAT_V	8.53E-04	3.71E-04	1.91E-04	2.27E-05	3.62E-06	1.44E-03	0.7%
7	07_KA18_05_SLGCAT_V	1.66E-03	7.40E-04	3.87E-04	6.69E-05	7.46E-06	2.87E-03	1.4%
8	08_KA08_06_COMGAS_V	1.33E-03	5.87E-04	2.95E-04	3.89E-05	1.05E-05	2.27E-03	1.1%
9	09_KA18_07_WGSLTS_V	1.26E-02	5.05E-03	2.21E-03	5.33E-04	1.12E-05	2.04E-02	9.9%
10	10_KA18_07_PIGL13_V	3.73E-07	1.93E-07	1.07E-07	5.30E-08	7.35E-11	7.27E-07	0.0004%
11	11_KA18_07_PIGL14_V	1.15E-06	5.98E-07	3.32E-07	1.65E-07		2.25E-06	0.001%
12	12_KA08_07_GASEXC_V	9.22E-04	4.58E-04	2.73E-04	1.20E-04	4.90E-07	1.77E-03	0.9%
13	13_KA08_07_HPKOGS_V	1.33E-03	6.03E-04	3.16E-04	7.79E-05	3.01E-06	2.33E-03	1.1%
14	14_KA08_07_CLSSFR_L			Sect	tion not inclu	ded		
15	15_KA08_07_CONEXC_L	7.83E-04	3.53E-04	1.83E-04 4.96E-05			1.37E-03	0.7%
16	16_KA18_08_LPIG64_L	2.17E-03	9.91E-04	5.02E-04	1.41E-04		3.81E-03	1.8%
17	17_KA18_08_LPIG64_L	5.43E-06	2.82E-06	1.56E-06	7.77E-07		1.06E-05	0.01%
18	18_KA08_09_SEPRTR_V	1.09E-03	4.83E-04	2.42E-04	4.33E-05	6.11E-06	1.87E-03	0.9%
19	19_KA08_09_SEPRTR_L			Sect	tion not inclu	ded		
20	20_KA08_09_BLWCSE_L			Sect	tion not inclu	ded		
21	21_KA08_09_PUMPBP_L			Sect	tion not inclu	ded		
22	22_KA08_09_BLWCSE_V	6.80E-04	2.91E-04	1.43E-04	2.57E-05		1.14E-03	0.6%
23	23_KA08_09_COOLER_V	7.95E-04	3.34E-04	1.57E-04	2.43E-05		1.31E-03	0.6%
24	24_KA08_09_SS9111_V	1.28E-03	6.02E-04	3.28E-04	1.07E-04	2.10E-07	2.32E-03	1.1%
25	25_KA08_09_SS9121_V	1.52E-03	7.04E-04	3.75E-04	1.14E-04	2.10E-07	2.71E-03	1.3%
26	26_KA08_09_COMPSR_V	3.04E-02	1.25E-02	5.25E-03	1.68E-03		4.98E-02	24.2%
27	27_KA18_10_SEPRTR_V	1.02E-03	4.47E-04	2.21E-04	3.52E-05	6.11E-06	1.73E-03	0.8%
28	28_KA18_10_SEPRTR_L			Sect	tion not inclu	ded		

Table 11-2: Hydrocarbon Release Frequencies for KA-8 and KA-18 (Base Case)

KAPUNI WELLSITES QUANTITATIVE RISK ASSESSMENT

No	QRA Event	1 - 3 mm	3 - 10 mm	10 - 50 mm	50 - 150 mm	> 150 mm	TOTAL	% Contrib.
29	29_KA18_10_BLWCSE_L			Sect	tion not inclu	ıded		
30	30_KA18_10_COOLER_V	7.92E-04	3.32E-04	1.57E-04	2.35E-05	1.40E-07	1.30E-03	0.6%
31	31_KA18_10_SS9111_V	1.26E-03	5.95E-04	3.25E-04	1.07E-04	2.10E-07	2.28E-03	1.1%
32	32_KA18_10_SS9101_V	1.48E-03	6.86E-04	3.73E-04	1.07E-04	2.10E-07	2.64E-03	1.3%
33	33_KA18_10_PUMPBP_L			Sect	tion not inclu	ıded		
34	34_KA18_10_BLWCSE_V	1.21E-03	5.41E-04	2.70E-04	7.57E-05		2.10E-03	1.0%
35	35_KA18_10_COMPSR_V	3.01E-02	1.24E-02	5.21E-03	1.67E-03		4.94E-02	23.9%
36	36_KA18_07_FUELGS_V	4.07E-04	1.74E-04	7.57E-05	2.50E-05		6.82E-04	0.3%
37	37_KA18_07_FLGSSS_V	2.01E-03	8.53E-04	4.24E-04	5.92E-05		3.35E-03	1.6%
38	38_KA08_07_FLGSEP_V	3.33E-03	1.37E-03	6.08E-04	1.60E-04		5.47E-03	2.7%
39	39_KA18_07_FLGSEP_V	3.22E-03	1.33E-03	5.89E-04	1.55E-04		5.29E-03	2.6%
40	40_KA18_11_GASEXC_V	1.88E-03	1.00E-03	6.21E-04	3.52E-04	1.61E-06	3.86E-03	1.9%
41	41_KA18_08_LTSUNB_V	8.76E-04	3.98E-04	2.14E-04	4.94E-05		1.54E-03	0.7%
42	42_KA18_08_LTSUNB_L	1.93E-03	8.56E-04	4.59E-04	8.51E-05		3.33E-03	1.6%
43	43_KA18_08_SHLEXC_V	5.16E-03	2.35E-03	1.21E-03	3.29E-04	3.60E-06	9.05E-03	4.4%
44	44_KA18_07_GPIG63_V	1.12E-06	5.80E-07	3.22E-07	8.49E-08	2.65E-08	2.13E-06	0.001%
45	45_KA18_14_MTHNOL_L	1.73E-03	7.74E-04	2.73E-04	7.29E-05	5.00E-06	2.85E-03	1.4%
46	46_KA18_14_MT2884_L	1.44E-03	8.23E-04	1.03E-03			3.29E-03	1.6%
47	47_KA18_14_MT2876_L	1.50E-03	8.76E-04	1.10E-03			3.48E-03	1.7%
48	48_KA18_14_MT2877_L	1.57E-03	8.96E-04	1.10E-03			3.56E-03	1.7%
49	49_KA18_05_SLGCAT_L			Sect	tion not inclu	ided		
54	54_KA18_05_SCPUMP_L			Sect	tion not inclu	ided		
	TOTAL	1.22E-01	5.22E-02	2.59E-02	6.45E-03	7.35E-05	2.06E-01	100.0%
	% Contribution	59%	25%	13%	3%	0.04%		

The total leak frequency for KA-8 and KA-18 wellsite (for the base case) is 2.06E-01 per year, which is equivalent to one leak every 4.9 years. Most of the leaks are predicted to be from small leaks, where 84% of the leaks are from hole sizes less than 10 mm diameter.

No	QRA Event	1 - 3 mm	3 - 10 mm	10 - 50 mm	50 - 150 mm	> 150 mm	TOTAL	% Contrib.
50	50_KA18_15_KA4WGP_V	1.29E-04	5.72E-05	2.84E-05	6.52E-06	1.07E-06	2.22E-04	0.1%
51	51_KA18_16_KA4P13_V	2.35E-05	1.01E-05	5.44E-06	3.20E-07	7.00E-08	3.94E-05	0.02%
52	52_KA18_17_KA4P14_V	4.29E-05	2.01E-05	1.13E-05	3.09E-06		7.74E-05	0.04%
53	53_KA18_18_KA1PPL_L	2.79E-05	1.21E-05	6.73E-06	3.90E-07		4.71E-05	0.02%
TOTAL (Base Case and Sensitivity)		1.22E-01	5.23E-02	2.59E-02	6.46E-03	7.47E-05	2.07E-01	0.2%
% Contribution		59%	25%	13%	3%	0.04%		

The leak frequencies for KA-8 and KA-18 sections for the sensitivity case are shown in Table 11-3.

Table 11-3: Hydrocarbon Release Frequencies for KA-8 and KA-18 (Sensitivity Case)

The total leak frequency for KA-8 and KA-18 wellsite (including the sensitivity cases) is 2.07E-01 per year (with only 3.9E-04 per year increment compared with the base case), which is equivalent to one leak every 4.8 years.

11.3 Risk Results

The risk results are presented in this section. The risk contours are contributed from both flammable and toxic risks from all release scenarios based on all the hazardous materials onsite.

The only toxic risk onsite is due to methanol toxicity from the methanol injection system. As the methanol tank is stored at atmospheric condition with limited inventory (4.7 m³ at maximum capacity) and bunded, the methanol toxic risk is very minor and localised. Hence no separate toxic risk contour was provided. Methanol toxic effect was modelled by using the probit method as detailed in the Assumptions Register [Ref. 5].

11.3.1 Base Case

The base case risk contour for KA-8 and KA-18 wellsite is presented in Figure 11-1.

Figure 11-1: Risk Contour for KA-8 and KA-18 Wellsite (Base Case)

The risk assessed against the HIPAP4 criteria for the base case are summarised in Table 11-4.

Table 11-4: LSIR Results Assessed Against the HIPAP4 Land Use Criteria for KA-8 and KA-18 (Base Case)

LSIR	Risk Contour	HIPAP4 Land Use Criteria	Result	
5E-05 / year	Blue	5E-5 / year risk contour should, as a target, be contained within the boundaries of the industrial site where applicable.	The 5E-05 / year risk contour exceeds the site boundary at the north as the compressor buildings are located at the northern side of the wellsite.	
1E-6 / year	Red	1E-6 / year risk contour should not extend to residential developments, hotels, tourist resorts.	Criteria met. There are residential developments, hotels, tourist resorts within the contour.	

11.3.2 Sensitivity Case

The LSIR for KA-8 and KA-18 wellsite sensitivity case, which include the gathering pipeline sections is presented in Figure 11-2.

Figure 11-2: LSIR Contours for KA-8 and KA-18 Wellsite (Sensitivity Case)

The risk contours for the sensitivity case are slightly larger compared to the base case due to the additional sections, however the assessment against the HIPAP4 criteria is the same. Hence is it not repeated.

11.4 Risk Contributors

The risk contributors to offsite risks at selected locations (points A, B and C) as shown in Figure 11-3 can be identified from the QRA model.

Figure 11-3: Location Selected to Identify Risk Contributors at KA-8 and KA-18 Wellsite

11.4.1 Base Case

The risk contributors for the base case with the risk contributors and percentage of contribution are shown in Table 11-5.

Point	LSIR (per year)	Contributor	% Contribution	Consequence
A	5.99E-05	35_KA18_10_COMPSR_V_71 mm (Hydrocarbon Gas from Compressors K- 9201A/B discharge)	90%	Fireball from early ignition
В	5.78E-05	26_KA08_09_COMPSR_V_71 mm (Hydrocarbon Gas from Compressors K- 9101A/B discharge)	94%	Fireball from early ignition
С	3.02E-05	09_KA18_07_WGSLTS_V_85 mm (Wet Gas from LTS (V-2804) to the gathering pipelines)	61%	Fireball from early ignition
		12_KA08_07_GASEXC_V_85 mm (Hydrocarbon Gas from KA-08 wellhead to HPKO V-2803)	12%	Fireball from early ignition

Table 11-5: Risk Contributors to Selected Locations for KA-8/18 (Base Case)

The risk contributor analysis shows that for both locations at plant north, the offsite risk contributors are mainly contributed by a single scenario, which are the rupture case from the compressors due to the proximity of the compressor buildings to the wellsite boundary. Compressors also have high leak frequencies as shown in Table 11-2, where these compressor discharge sections contributed approximately 24% each to the overall plant release frequencies.

For the offsite point at the plant west (point C), the risks are mainly contributed by the equipment (scenario 09 is from the vapour section of the LT Separator and scenario 12 is the gas feeding into the LTS unit) from the LTS units due to proximity of the LTS unit to the wellsite western boundary.

11.4.2 Sensitivity Case

The risk contributors for the sensitivity case with the contributors and percentage of contribution are shown in Table 11-6.


Point	LSIR (per year)	Contributor	% Contribution	Consequence
A	5.99E-05	35_KA18_10_COMPSR_V_71 mm (Hydrocarbon Gas from Compressors K- 9201A/B discharge)	90%	Fireball from early ignition
В	5.78E-05	26_KA08_09_COMPSR_V_71 mm (Hydrocarbon Gas from Compressors K- 9101A/B discharge)	94%	Fireball from early ignition
С	3.02E-05	09_KA18_07_WGSLTS_V_85 mm (Wet Gas from LTS (V-2804) to the gathering pipelines)	61%	Fireball from early ignition
		12_KA08_07_GASEXC_V_85 mm (Hydrocarbon Gas from KA-08 wellhead to HPKO V-2803)	12%	Fireball from early ignition

Table 11-6: Risk Contributors to Selected Locations for KA-8/18 (Sensitivity Case)

The risk contributors for the sensitivity case are consistent with the base case, where the sensitivity cases contributed very low incremental risk to the wellsite due to the low release frequencies from the additional pipeline sections.

It should be noted that Safeti cannot consider the effect of the obstacles / objects located along the way where the heat is radiated from the release source. In reality heat may be shielded by some process equipment / piping before extending offsite.

12. WELLSITE KA-13

12.1 Release Scenarios

The P&IDs showing the isolatable sections for KA-3 are presented in Appendix 7. Table 12-1 details the section description and the respective operating conditions that are used in the QRA.

No.	Section ID	Description	Material / Stream ^{Note 1}	Pressure (barg)	Temp. (°C)	Largest Connection Size (mm)	Section Inventory (m³)	Isolatable Inventory (m ³)
1	01_KA13_01_WLHEAD_L	Wellstream fluid from KA-13 wellhead to XSV-21330	35	18.7	23.8	100	Unlimited Note 2	
2	02_KA13_02_FLWLNE_L	Wellstream fluid from XSV-21330 to Condensate Pipeline SDV- 21310B	36	18.6	23.7	150	2.06	2.06
3	03_KA13_03_METNK1_L	Methanol Tank (T-21331) to Methanol Pump (P-21309)	Methanol	Atm	Amb	50	0.10	0.10
4	04_KA13_04_METNK2_L	Methanol Tank (T-21316) to Methanol Pump (P-21320)	Methanol	Atm	Amb	50	0.10	0.10
	Sensitivity Cases							
5	05_KA13_05_LIQPIP_L	Wellstream fluid from SDV-21310B feed into liquid pipeline from KA-05 to KPS	36	18.6	23.7	150	55.50 Note 3	55.50
6	06_KA13_06_GASPPL_V	Hydrocarbon gas from wellsites KA-5, 6 and 11 to KPS	34	17.7	20.4	250	152.90 Note 3	152.90

Table 12-1: Release Scenarios and Operating Conditions for KA-3

Notes:

1. Stream composition refers to the stream numbers in the HMB. The full HMB for all wellsites is attached Appendix 8.

2. Inventory from the wellhead section is considered to be unlimited because they can be supplied from the downhole reservoir.

3. Sections connecting to the pipeline inventories due to the lack of isolation valve.

12.2 Release Frequency

The leak frequencies for the process releases are estimated for each representative hole size using parts count results and the historical leak frequencies. The leak frequencies for KA-13 sections for the base case are shown in Table 12-2. KA-13 is only in operation periodically for around 1 out of every 3 months.

No	QRA Event	1 - 3 mm (2 mm)	3 - 10 mm (6 mm)	10 - 50 mm (22 mm)	50 - 150 mm (85 mm)	> 150 mm	TOTAL	% Contrib.
1	01_KA13_01_WLHEAD_L	1.12E-05	4.61E-06	1.89E-06	6.14E-07		1.83E-05	0.6%
	KA-13 Blowout				1.40E-05		1.40E-05	0.7%
2	02_KA13_02_FLWLNE_L	6.11E-04	2.62E-04	1.40E-04	8.00E-06	1.69E-06	1.02E-03	41.3%
3	03_KA13_03_METNK1_L	4.33E-04	1.97E-04	6.01E-05	2.01E-05	1.67E-06	7.12E-04	28.7%
4	04_KA13_04_METNK2_L	4.33E-04	1.97E-04	6.01E-05	2.01E-05	1.67E-06	7.12E-04	28.7%
	TOTAL	1.49E-03	6.62E-04	2.62E-04	6.27E-05	5.02E-06	2.48E-03	100.0%
	% Contribution	60%	27%	11%	2%	0.2%		

Table 12-2: Hydrocarbon Release Frequencies for KA-13 (Base Case)

The total leak frequency for KA-3 wellsite (for the base case) is 2.48E-03 per year, which is equivalent to one leak every 403 years. Most of the leaks are predicted to be from small leaks, where 87% of the leaks are from hole sizes less than 10 mm diameter.

The leak frequencies for KA-13 sections for the sensitivity case are shown in Table 12-3.

No	QRA Event	1 - 3 mm	3 - 10 mm	10 - 50 mm	50 - 150 mm	> 150 mm	TOTAL	% Contrib.
5	05_KA13_05_LIQPIP_L	6.72E-04	2.88E-04	1.55E-04	1.17E-05	8.89E-07	1.13E-03	25.5%
6	06_KA13_06_GASPPL_V	3.97E-04	1.73E-04	9.25E-05	7.26E-06	2.43E-06	6.73E-04	15.2%
TOTAL (Base Case and Sensitivity)		2.56E-03	1.12E-03	5.09E-04	8.17E-05	8.34E-06	4.28E-03	
% Contribution		60%	26%	12%	2%	0.2%		

Table 12-3: Hydrocarbon Release Frequencies for KA-13 (Sensitivity Case)

The total leak frequency for KA-13 wellsite (including the sensitivity cases) is 4.28E-03 per year, which is equivalent to one leak every 234 years.

12.3 Risk Results

The risk results are presented in this section. The risk contours are contributed from both flammable and toxic risks from all release scenarios based on all the hazardous materials onsite.

The only toxic risk onsite is due to methanol toxicity from the methanol tanks. As the methanol tanks are stored at atmospheric condition with limited inventory (typically 0.1 m³ at each tank) and bunded, the methanol toxic risk is very minor and localised. Hence no separate toxic risk contour was provided. Methanol toxic effect was modelled by using the probit method as detailed in the Assumptions Register [Ref. 5].

12.3.1 Base Case

The base case LSIR for KA-13 wellsite is presented in Figure 12-1.

Figure 12-1: LSIR Contours for KA-13 Wellsite (Base Case)

The risk assessed against the HIPAP4 criteria are summarised in Table 12-4.

Table 12-4: LSIR Results Assessed Against the HIPAP4 Land Use Criteria for KA-13	(Base Case)
--	-------------

LSIR	Risk Contour	HIPAP4 Land Use Criteria	Result	
5E-05 / year	Blue	5E-5 / year risk contour should, as a target, be contained within the boundaries of the industrial site where applicable.	Criteria met. The 5E-05 / year risk contour is within the site boundary.	
1E-6 / year	Red	1E-6 / year risk contour should not extend to residential developments, hotels, tourist resorts.	Criteria met. There are no residential developments, hotels, tourist resorts within the contour.	

12.3.2 Sensitivity Case

The LSIR for KA-13 wellsite sensitivity case, which include the gathering pipeline sections is presented in Figure 12-2.

Figure 12-2: LSIR Contours for KA-13 Wellsite (Sensitivity Case)

The risk contours for the sensitivity case are significantly larger than the base case risk contour, especially for the 1E-06/ year risk. This is mainly contributed by jet fire events from the gathering pipelines which can be feed by large pipeline inventories. The risk assessed against the HIPAP4 criteria are summarised in Table 12-4.

LSIR	Risk Contour	HIPAP4 Land Use Criteria	Result	
5E-05 / year	Blue	5E-5 / year risk contour should, as a target, be contained within the boundaries of the industrial site where applicable.	Criteria met. The 5E-05 / year risk contour is within the site boundary.	
1E-6 / year	Red	1E-6 / year risk contour should not extend to residential developments, hotels, tourist resorts.	Criteria met. There are no residential developments, hotels, tourist resorts within the contour.	

 Table 12-5: LSIR Results Assessed Against the HIPAP4 Land Use Criteria for KA-13 (Base Case)

12.4 Risk Contributors

For both the base case and the sensitivity case, the 5E-05 / year risk contour and the 1E-06 /year risk contour remain within the site boundary. This is because there are only very limited equipment onsite. As the risk contours did not extend offsite, no locations were selected for risk contributor identification.

13. CONCLUSIONS

This QRA study represents a comprehensive assessment of risks from Kapuni wellsites, commensurate in detail to the information available at the time. Table 13-1 presents the summary of main findings of the risk assessments.

	HIPAP4 Land Use Criteria (Proposed development of a potentially hazardous nature, or for land use planning in the vicinity of existing hazardous installations)					
Wellsite	5E-05 / year	1E-6 / year				
	(5E-5 / year risk contour should, as a target, be contained within the boundaries of the industrial site where applicable)	(1E-6 / year risk contour for residential developments and places of continuous occupancy such as hotels, tourist resorts)				
	KA-1/7/19/20					
Base Case	Criteria met.	Criteria met.				
	The 5E-05 / year risk contour is within the site boundary.	There are no residential developments, hotels, tourist resorts within the contour.				
Sensitivity Case	Same as Base Case	Same as Base Case				
	КА-2					
Base Case	Criteria met.	Criteria met.				
	The 5E-05 / year risk contour is within the site boundary.	There are no residential developments, hotels, tourist resorts within the contour.				
	KA-4/14					
Base Case	Criteria met.	Criteria met.				
	The 5E-05 / year risk contour is within the site boundary.	There are no residential developments, hotels, tourist resorts within the contour.				
Sensitivity Case	Same as Base Case	Same as Base Case				
	КА-5/10					
Base Case	Criteria met.	Criteria met.				
	The 5E-05 / year risk contour is within the site boundary.	There are no residential developments, hotels, tourist resorts within the contour.				
Sensitivity Case	Same as Base Case	Same as Base Case				
	KA-6/11/17					
Base Case	Criteria met.	Criteria met.				
	The risk level is lower than 5E-05 / year.	There are no residential developments, hotels, tourist resorts within the contour.				
Sensitivity Case	Same as Base Case	Same as Base Case				
	KA-8/12/15/18					
Base Case	The 5E-05 / year risk contour exceeds the site	Criteria met.				
	boundary at the north as the compressor buildings are located at the northern side of the wellsite.	There are no residential developments, hotels, tourist resorts within the contour.				
Sensitivity Case	Same as Base Case	Same as Base Case				

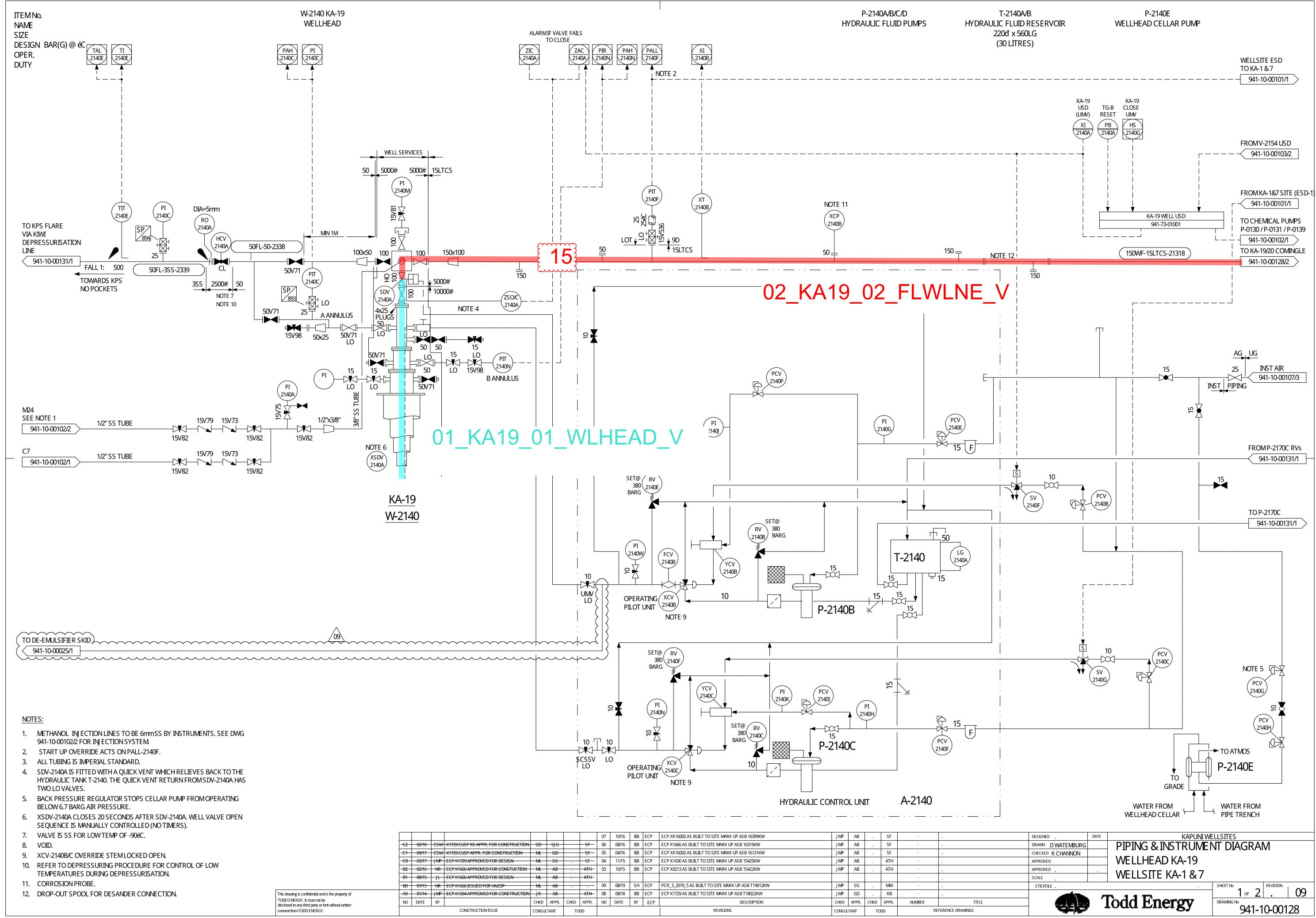
KAPUNI WELLSITES QUANTITATIVE RISK ASSESSMENT

	HIPAP4 Land Use Criteria (Proposed development of a potentially hazardous nature, or for land use planning in the vicinity of existing hazardous installations)	
Wellsite	5E-05 / year	1E-6 / year
	(5E-5 / year risk contour should, as a target, be contained within the boundaries of the industrial site where applicable)	(1E-6 / year risk contour for residential developments and places of continuous occupancy such as hotels, tourist resorts)
КА-13		
Base Case	Criteria met.	Criteria met.
	The 5E-05 / year risk contour is within the site boundary.	There are no residential developments, hotels, tourist resorts within the contour.
Sensitivity Case	Same as base case	Same as base case

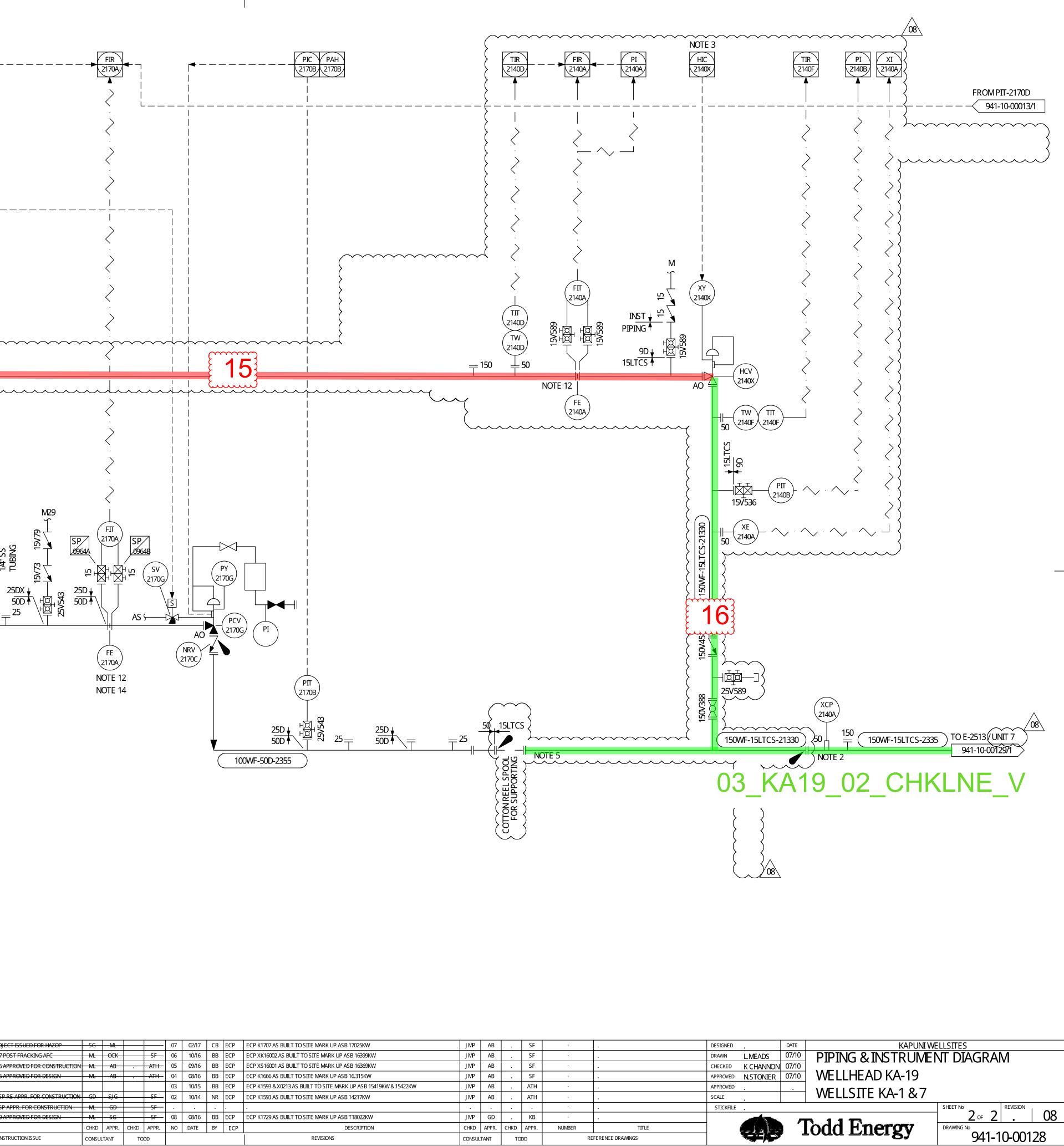
For almost all the wellsites, the HIPAP4 Land Use Criteria are met except for KA-8/18 wellsite where the 5E-05/year risk contour exceeds the site boundary at the north as the compressor buildings are located at the northern side of the wellsite.

For all sensitivity cases (where the aboveground sections of the gathering pipelines are included), the risk contours are only slightly larger compared to the base case. This is due to the low release frequencies from the additional pipeline sections which do not contribute significantly to the overall risk. The assessment against the HIPAP4 criteria are all consistent with the base case findings.

Risk contributors to offsite risks are also identified to help to identify the equipment / section of wellsites that are leading to offsite impact. For wellsites that have no offsite impact, risk contributor analyses were not conducted.


14. **REFERENCES**

- 1. Todd Energy, Safety Case Kapuni Production Station, Doc. No. NOL649981, Rev 1, January 2018.
- 2. Todd Energy Fire and Explosion Analysis and Quantitative Risk Assessment Methodology Guideline, NZ-1005-TECD721654, Rev. 0.
- 3. Worley New Zealand Ltd Onshore QRA Procedure (Using Phast Risk), PCD-473.
- 4. DNV Safeti software version 8.22.
- 5. Kapuni Wellsites QRA, Assumptions Register, 610114-RPT-R0001, Rev. 0, August 2020.
- 6. New Zealand National Climate Database (http://cliflo.niwa.co.nz/)
- 7. OGP 434-1, Process Release Frequencies, September 2019
- 8. TNO Purple Book, Guidelines for Quantitative Risk Assessment, December 2005
- 9. OGP 434-2, Blowout Frequencies, 2019
- 10. IP research report, Ignition probability review, model development and look-up correlations, January 2006
- 11. OGP 434-6, Ignition Probabilities, September 2019
- 12. Methods for the Determination of Possible Damage (TNO Green Book)
- 13. Oil and Gas UK, Fire and Explosion Guidance, Issue 1 May 2007
- 14. Flammability of Hydrocarbon / CO2 mixtures: Part 1, Ignition and Explosion Characteristic, Symposium Series No. 156, 2011.
- 15. Taranaki Regional Council, https://maps.trc.govt.nz/LocalMapsViewer/?map=5113f49337a84cf098db177c728b1361
- 16. New South Wales Hazardous Industry Planning Advisory Paper No. 4, Risk Criteria for Land Use Safety Planning, January 2011
- 17. South Taranaki District Council, District Plan 2004 (<u>https://www.southtaranaki.com/our-council/plans-strategies-and-reports/district-plan</u>)



Appendix 1. P&ID Sectionalisation for KA-19

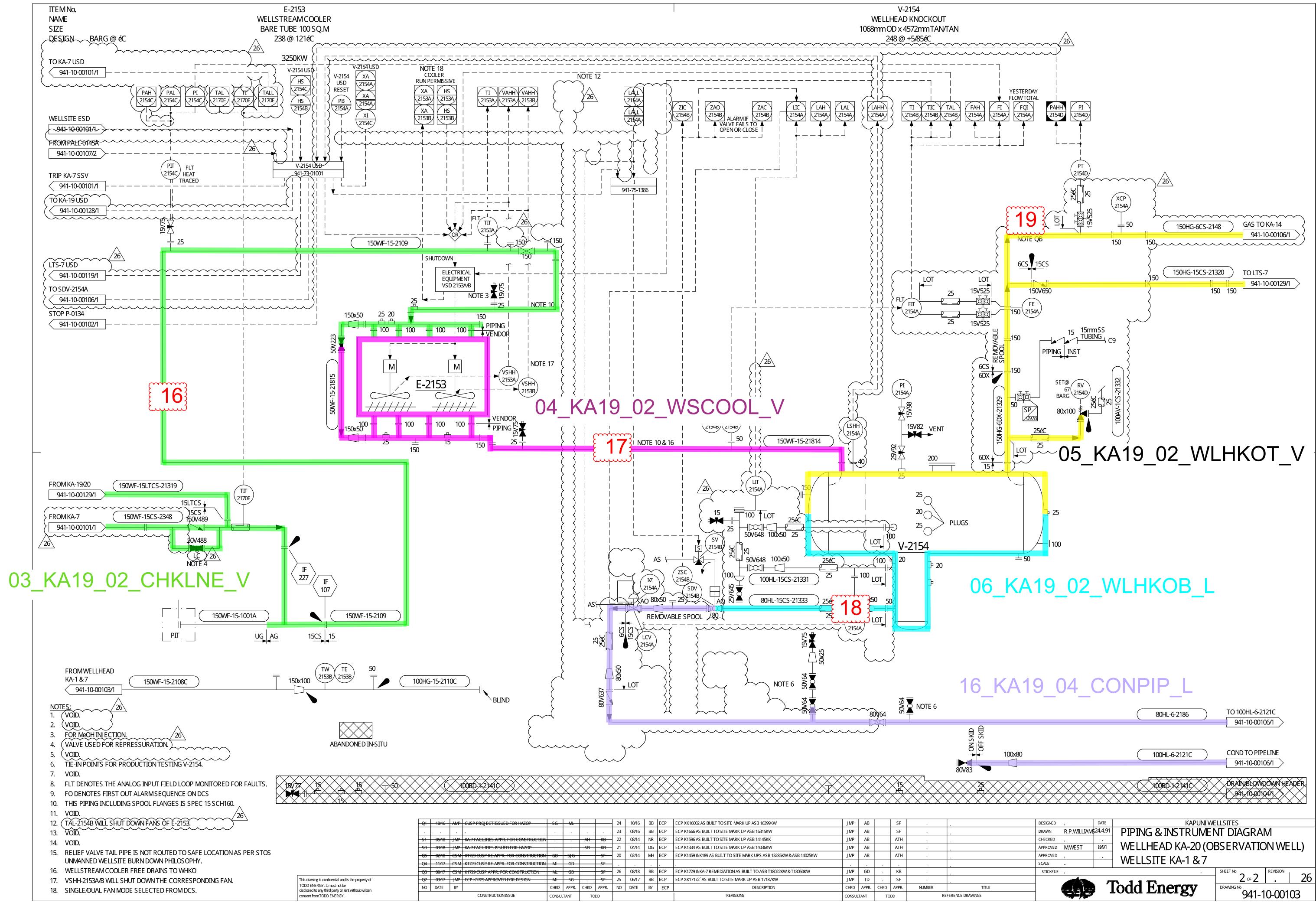
ISSUE	CONSUL	TANT	то	DD					REVISIONS	CONSUL	TANT	TO	DD	RE	FERENCE DRAWINGS
	CHKD	APPR.	CHKD	APPR.	NO	DATE	BY	ECP	DESCRIPTION	CHKD	APPR.	CHKD	APPR.	NUMBER	TITLE
FOR CONSTRUCTION	JR	AB		ATH-	08	08/18	BB	ECP	ECP K1729 AS BUILT TO SITE MARK UP ASB T18022KW	JMP	GD		KB	•	•
r hazop	ML	AB	•		09	08/19	SH	ECP	PCR_3_2019_5 AS BUILT TO SITE MARK UP ASB T19012KW	JMP	SG		MW	•	
FOR DESIGN	ML	AB		ATH-										•	•
FOR CONSTUCTION	ML	AB		ATH	03	10/15	BB	ECP	ECP X0213 AS BUILT TO SITE MARK UP ASB 15422KW	J MP	AB		ATH	•	
FOR DESIGN	ML	SG	•	SF	04	11/15	BB	ECP	ECP K1630 AS BUILT TO SITE MARK UP ASB 15425KW	JMP	AB	•	ATH	•	
R CONSTRUCTION	ML	GD			05	04/16	BB	ECP	ECP XK16002 AS BUILT TO SITE MARK UP ASB 16131KW	JMP	AB	•	SF	•	
FOR CONSTRUCTION	GD	SJ G			06	08/16	BB	ECP	ECP K1666 AS BUILT TO SITE MARK UP ASB 16315KW	JMP	AB		SF	•	
					07	10/16	BB	ECP	ECP XK16002 AS BUILT TO SITE MARK UP ASB 16399KW	JMP	AB		SF	•	•

FROMKA-20 USD 941-10-00131/1		
WELL FLUID FROM KA-19 WELLHEAD 941-10-00128/1 02_KA19	_02_FLWI	.NE_V ~~~~
WELL FLUID FROM KA-20 WELLHEAD 941-10-00131/1 NOTE 5 NOTE 6	1502 50D = 13	25DX + PI 2170L 25DX + 25DX + 25DX + 50 -2334 25
NOTES:		
 VOID. SommRCS ACCESS FITTING WITH CORROSION PROBE. ELASTOMERS IN ACCESS 	08	
 VOID. INJ ECTION REQUIRED ONLY WHEN OPERATING KA-20. (KA-19 SHUTDOWN AND ISOLATED). VOID ECCENTRIC ORIFICE. DROP-OUT SPOOL REMOVED TEMPORARILY. ORIFICE PLATE SIZED FOR ASME 4" 1500#RTJ FLANGE USING R39 RING GASKET. THIS IS ALSO THE API STANDARD GASKET FOR API 5000#4-1/16" FLANGE AND THEREFORE ACCEPTABLE FOR USE WITH STOS SPEC 50 (API5000#) PIPING. 	This drawing is confidential and is the property of TODD ENERGY. It must not be disclosed to any third party or lent without written consent from TODD ENERGY.	E0 10/16 AMP CUSP PROJECT -D0 09/16 JMP ECP K1707 PC -C2 02/16 NR ECP K1666 AP -C1 08/15 JL ECP K1666 AP -E3 02/18 CSM K1729 CUSP P -E2 09/17 CSM K1729 CUSP AP -E1 03/17 JMP ECP K1729 AP NO DATE BY CONST

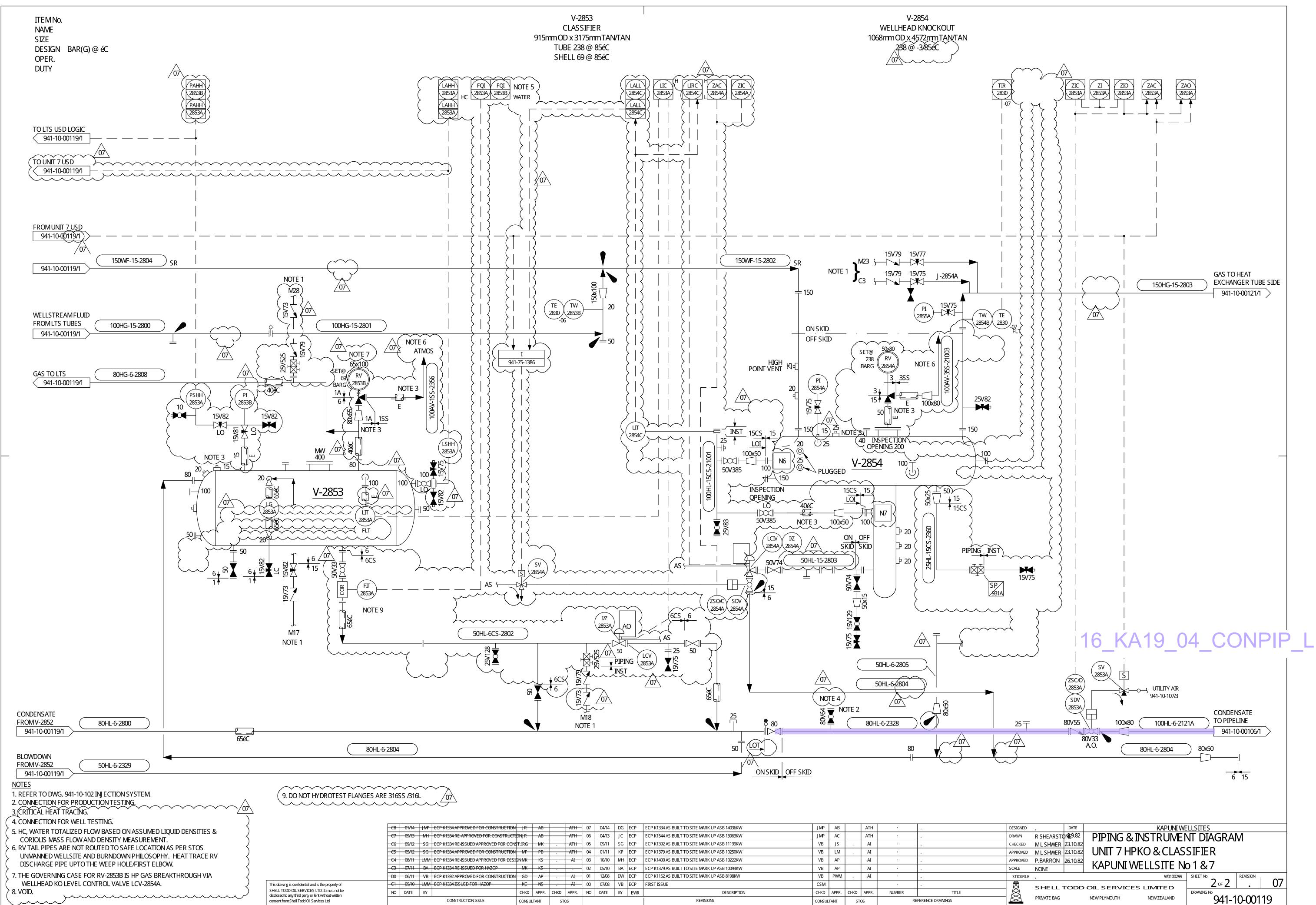
ECT ISSUED FOR HAZOP	SG	ML		<u> </u>	07	02/17	CB	ECP	ECP K1707 AS BUILT TO SITE MARK UP ASB 17025KW	JMP	AB		SF		•
POST FRACKING AFC	ML	ОСК		SF-	06	10/16	BB	ECP	ECP XK16002 AS BUILT TO SITE MARK UP ASB 16399KW	JMP	AB		SF	•	•
APPROVED FOR CONSTRUCTION	ML	AB	•	ATH	05	09/16	BB	ECP	ECP XS16001 AS BUILT TO SITE MARK UP ASB 16369KW	JMP	AB		SF	•	•
APPROVED FOR DESIGN	ML	AB	•	ATH	04	08/16	BB	ECP	ECP K1666 AS BUILT TO SITE MARK UP ASB 16.315KW	JMP	AB		SF	•	•
					03	10/15	BB	ECP	ECP K1593 & X0213 AS BUILT TO SITE MARK UP ASB 15419KW & 15422KW	JMP	AB		ATH	•	•
PRE-APPR. FOR CONSTRUCTION	GD	SJG		SF	02	10/14	NR	ECP	ECP K1593 AS BUILT TO SITE MARK UP ASB 14217KW	JMP	AB		ATH	•	
APPR. FOR CONSTRUCTION	ML	GD		SF-		•			•				•		•
APPROVED FOR DESIGN	ML	SG		SF-	08	08/16	BB	ECP	ECP K1729 AS BUILT TO SITE MARK UP ASB T18022KW	JMP	GD		KB		•
	CHKD	APPR.	CHKD	APPR.	NO	DATE	BY	ECP	DESCRIPTION	CHKD	APPR.	CHKD	APPR.	NUMBER	TITLE
STRUCTION ISSUE	CONSUL	TANT	тс	DD					REVISIONS	CONSUL	TANT	TO	DD	REI	FERENCE DRAWINGS

	H-2194 T 7 WELLSTREAM HEATER				
SIZE DESIGN OPER.					
DUTY					
TAL					
05_KA19_02_WLHKOT_\	/				
TO LTS 7 941-10-00119/1 150HG-15CS-2325					
FROMV-2154 150HG-15CS-21320 150V385 941-10-00103/2					
This valve is closed					
TO COOLER E-2153 150WF-15LTCS-21319 150V752					
	3332 ◄				
WELLSTREAM FLUID FROM KA-19 & 20 (150WF-15LTCS-2335) 100V71					
<u>941-10-00128/2</u> 03_KA19_02_CHKLNE_V		AG			
KO POT V-2111 25FG-1LTCS-2349 941-10-00107/1	2	10x25			
WATER FROMT-101 (25SW-1W-2291)					
941-10-00112/1					
$\left< \begin{array}{c} \mathbf{IF} \\ 255 \end{array} \right> \left< \begin{array}{c} \mathbf{IF} \\ 256 \end{array} \right>$					
INSTRUMENT AIR 25CA-1CS-2366	5	50x25		 	
AG UG UG AG					
		<u>.</u>		<u> </u>	
			- 02/18 - 09/17	CSM	- K1729 CUSP RE-A - K1729 CUSP APPI
		D1 D0 C1	- 03/17 - 10/16 - 09/16	AMP J MP	ECP K1729 APPRO CUSP PROJECT IS ECP K1707 FRACE
	This drawing is confidential and is the property of TODD ENERGY. It must not be disclosed to any third party or lent without written consent from TODD ENERGY.	NO	08/16 DATE	J MP BY	ECP K1707 ISSUE

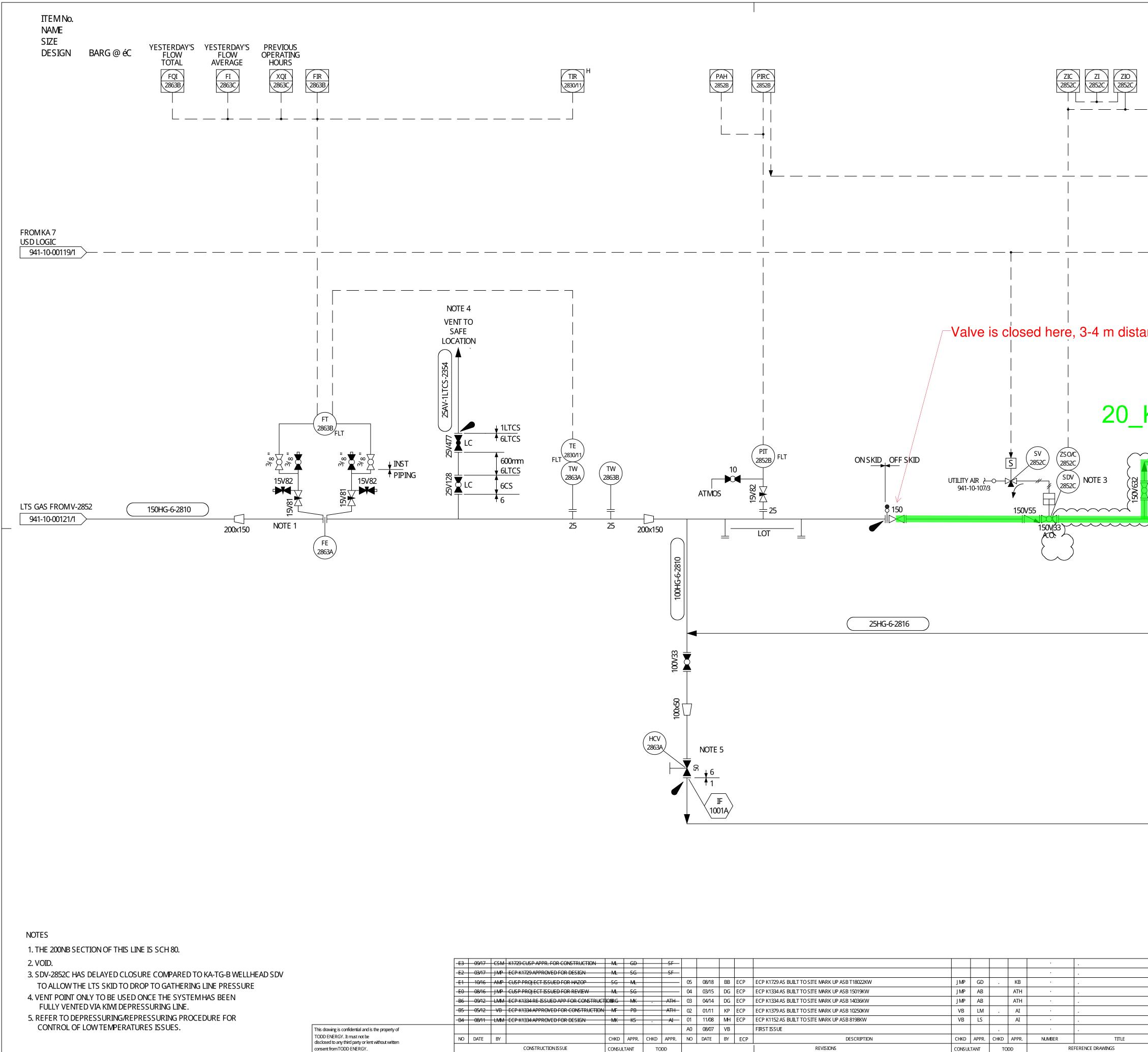
H-2194 REFER VENDOR P&ID 941-10-00129/2


VENDOR PACKAGE

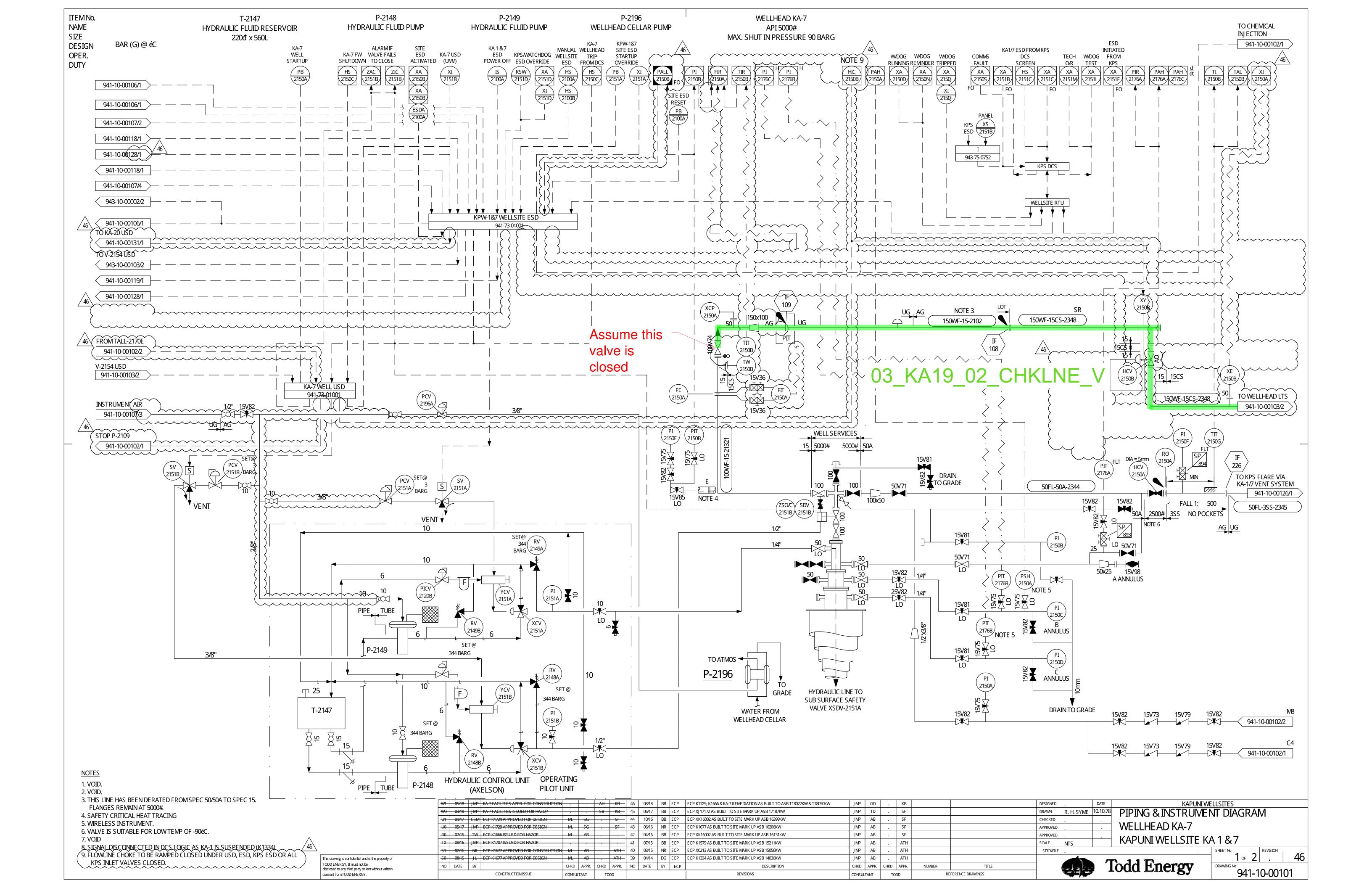
CONSTRUCTION ISSUE	CONSUL	TANT	тс	DD					REVISIONS	CONSUL	TANT	TO	DD	RE	Ference Drawings
	CHKD	APPR.	CHKD	APPR.	NO	DATE	BY	ECP	DESCRIPTION	CHKD	APPR.	CHKD	APPR.	NUMBER	TITLE
P K1707 ISSUED FOR HAZOP					00	•	DW	ECP	ECP K1334 FIRST ISSUE					•	•
P K1707 FRACK FLOWBACK AFC				ATH	01	04/14	DG	ECP	ECP K1334 AS BUILT TO SITE MARK UP ASB 14036KW	JMP	AB		ATH	•	•
SP PROJECT ISSUED FOR HAZOP	SG	ML			02	11/15	BB	ECP	ECP K1630 AS BUILT TO SITE MARK UP ASB 15425KW	JMP	AB		ATH	•	•
P K1729 APPROVED FOR DESIGN	ML	SG		SF	03	08/16	BB	ECP	ECP K1666 AS BUILT TO SITE MARK UP ASB 16315KW	JMP	AB	•	SF	•	•
729 CUSP APPR. FOR CONSTRUCTION	ML	GÐ		SF	04	06/17	BB	ECP	ECP XK17172 AS BUILT TO SITE MARK UP ASB 17187KW	JMP	TD		SF	•	•
729 CUSP RE-APPR. FOR CONSTRUCTION	GD	SJ G		SF	05	08/18	BB	ECP	ECP K1729 AS BUILT TO SITE MARK UP T18022KW	JMP	GD		KB	•	•
					06	11/19	JJP	ECP	ECP K1827 AS BUILT TO SITE MARK UP ASB T19019KW	JMP	SG		MW	•	•
	•	•	•	.	•		•			•		•		•	•

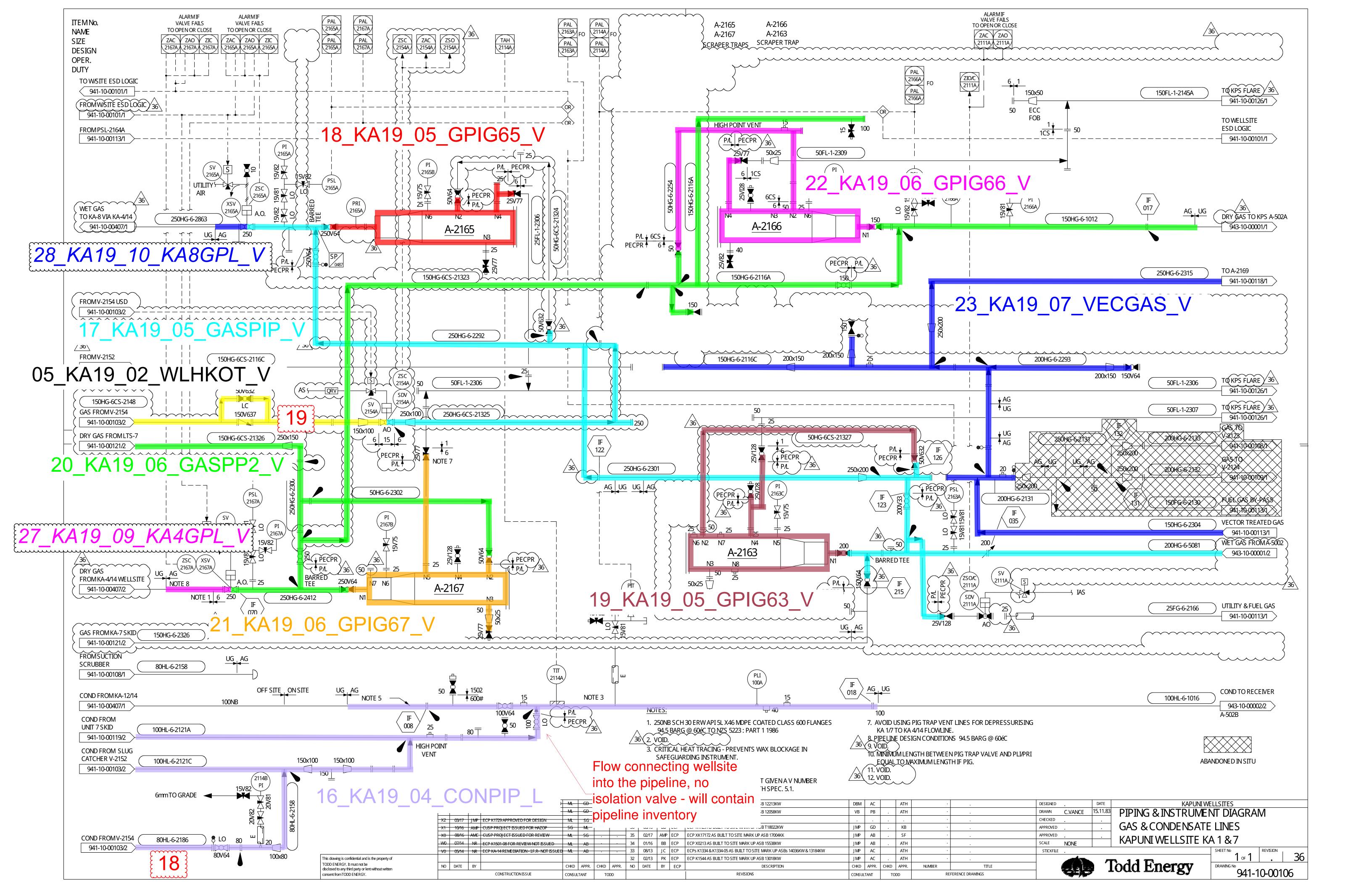

.

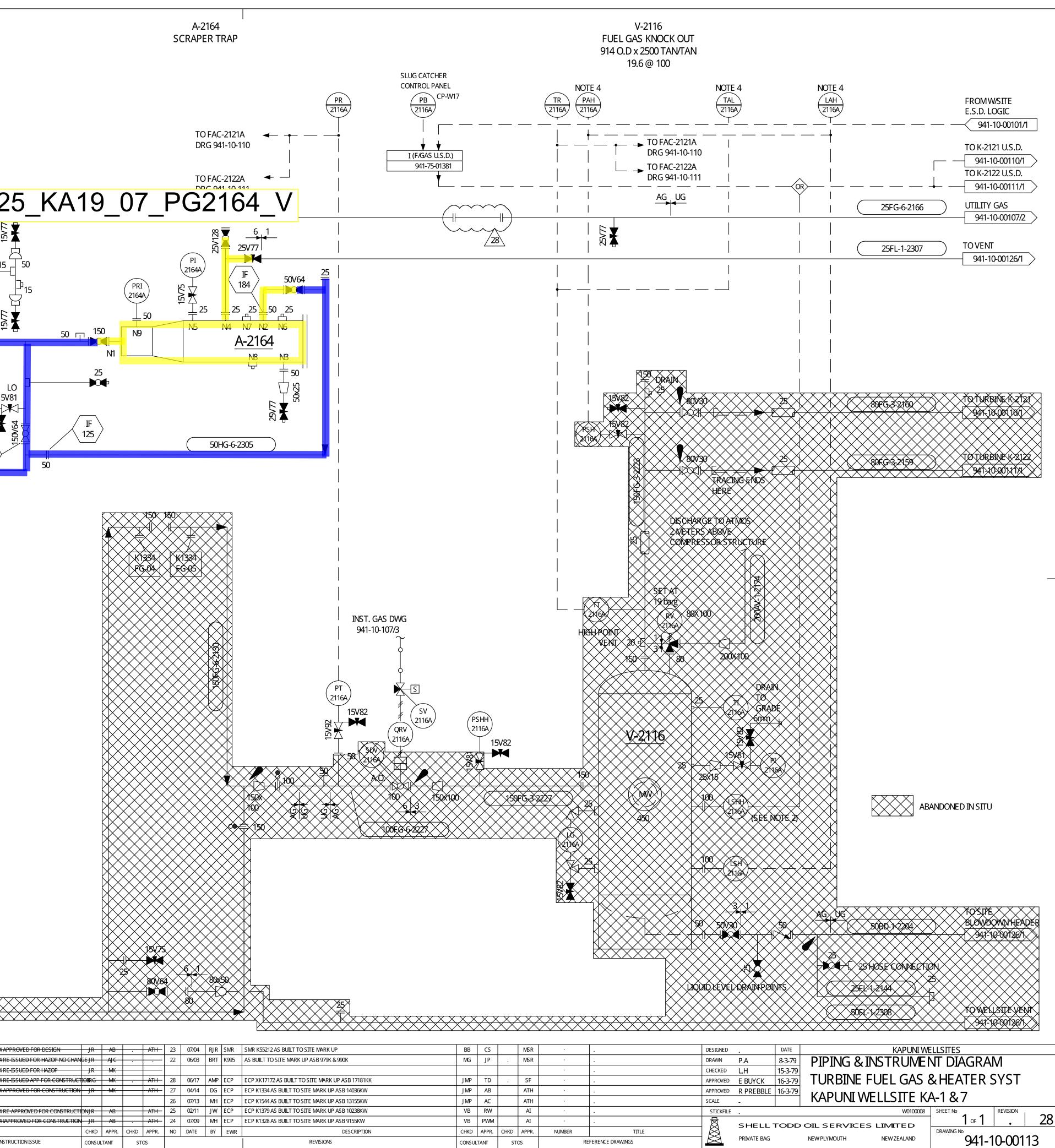
1 1 1

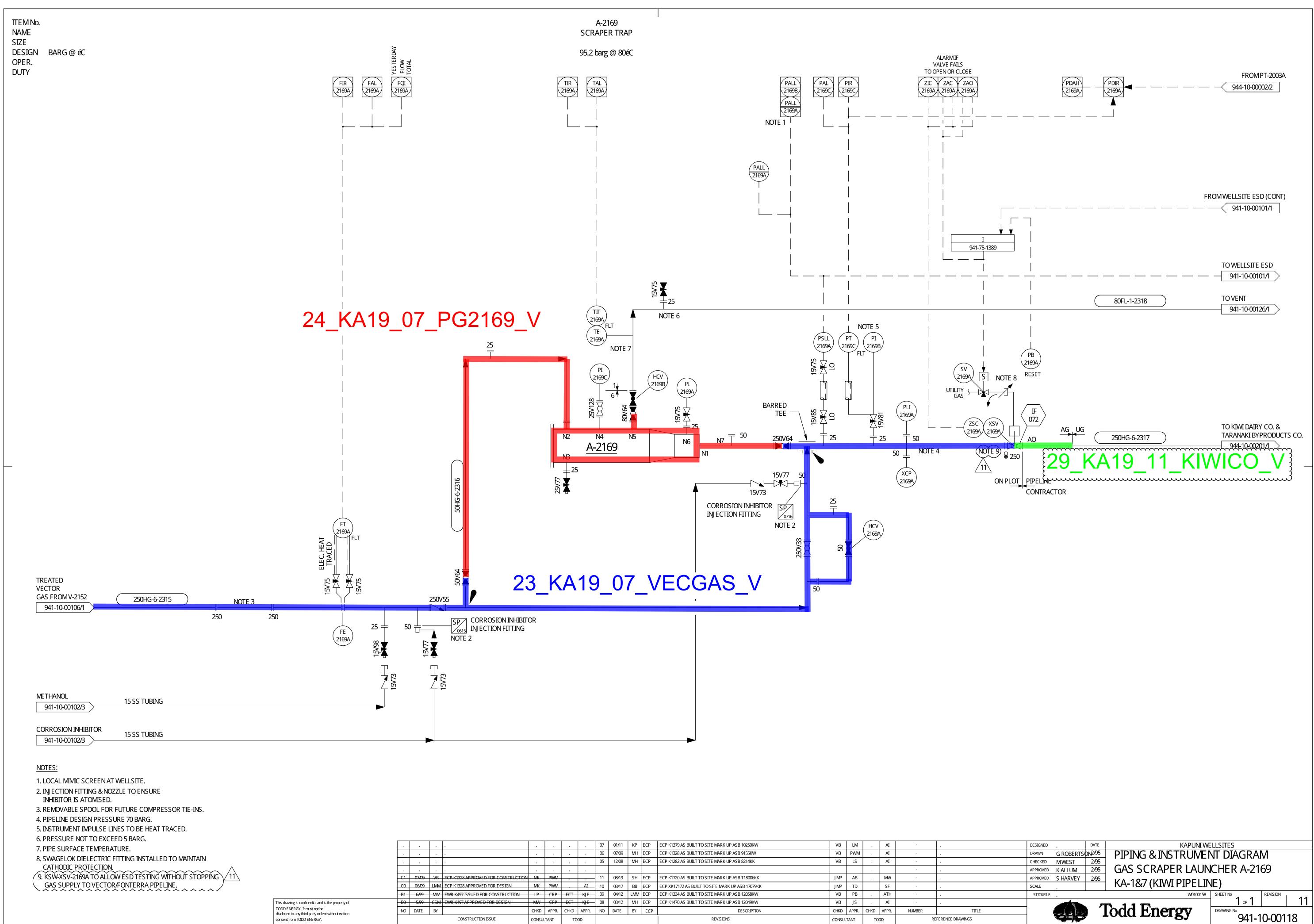

ТП 2194А PP/ 	IF 57 F 254 PP	150WF-15CS-2	WELLFLUIDS TO 2347 V-2852 LTS VESSEL 941-10-00119/1
AG T	JG UG AG	KAPUNIWE	LLISITES
 DRAWN DWATEMBURG CHECKED APPROVED SCALE STICKFILE	· WELLST	& INSTRUMEN REAM HEATE FE KA-1 & 7	
	Todd E		1 oF 2 . 06 DRAWING № 941-10-00129

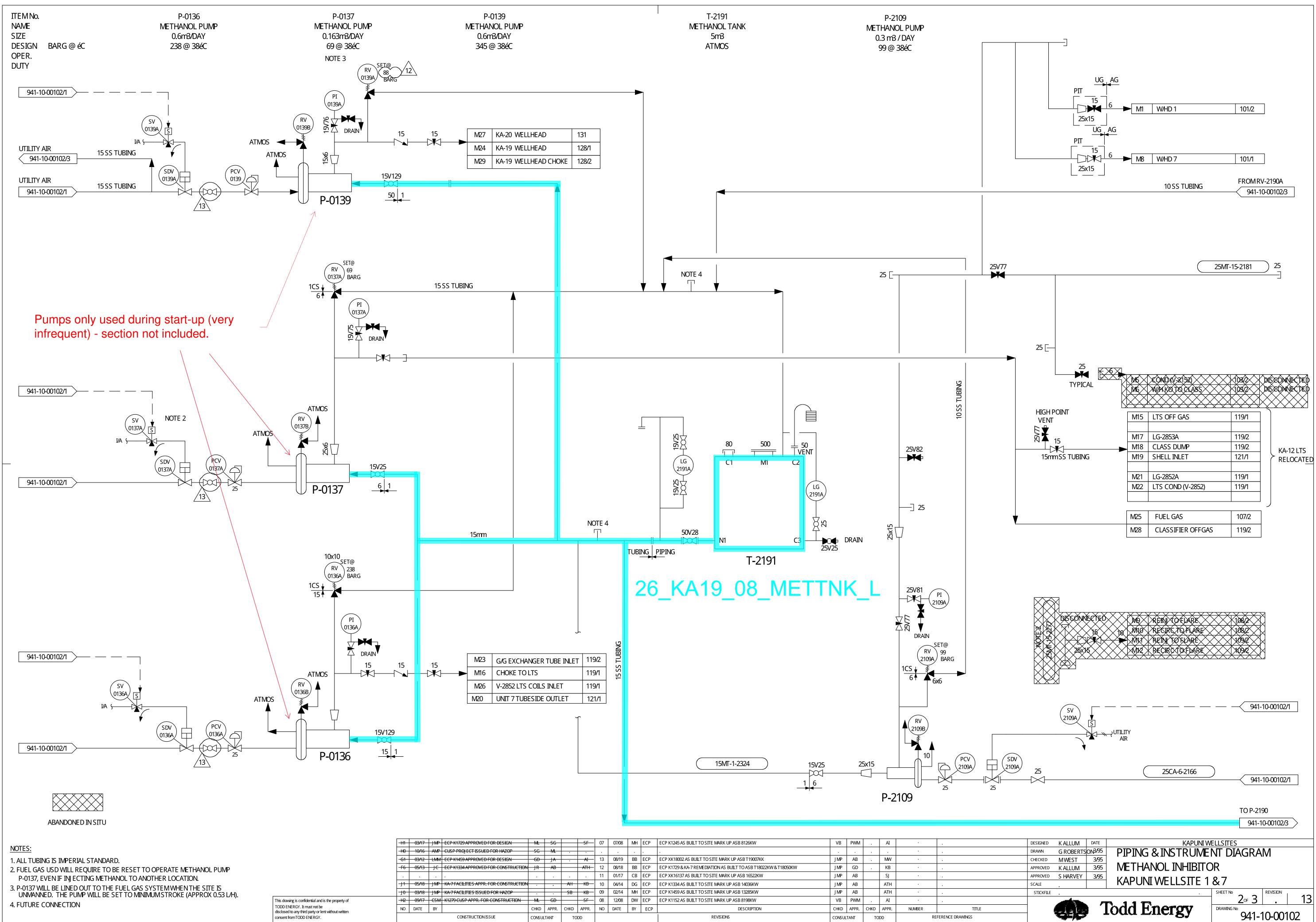
			-												
ECT ISSUED FOR HAZOP	SG	ML			24	10/16	BB	ECP	ECP XK16002 AS BUILT TO SITE MARK UP ASB 16399KW	JMP	AB		SF	•	
	•				23	08/16	BB	ECP	ECP K1666 AS BUILT TO SITE MARK UP ASB 16315KW	JMP	AB		SF		
TIES APPR. FOR CONSTRUCTION	•	•	AH	КВ	22	08/14	NR	ECP	ECP K1596 AS BUILT TO SITE MARK UP ASB 14145KK	JMP	AB		ATH		•
TIES ISSUED FOR HAZOP	•		SB	КВ	21	04/14	DG	ECP	ECP K1334 AS BUILT TO SITE MARK UP ASB 14036KW	JMP	AB		ATH	•	
PRE-APPR. FOR CONSTRUCTION	GD	SJG		SF	20	02/14	MH	ECP	ECP K1459 & K189 AS BUILT TO SITE MARK UPS ASB 13285KW & ASB 14025KW	JMP	AB		ATH		•
PRE-APPR. FOR CONSTRUCTION	ML	GD		SF											
PAPPR. FOR CONSTRUCTION	ML	GD		SF	26	08/18	BB	ECP	ECP K1729 & KA-7 REMEDIATION AS BUILT TO ASB T18022KW & T18050KW	JMP	GD		KB		
APPROVED FOR DESIGN	ML	SG	•	SF	25	06/17	BB	ECP	ECP XK17172`AS BUILT TO SITE MARK UP ASB 17187KW	JMP	TD		SF	•	
	CHKD	APPR.	CHKD	APPR.	NO	DATE	BY	ECP	DESCRIPTION	CHKD	APPR.	CHKD	APPR.	NUMBER	TITLE
STRUCTION ISSUE	CONSUL	TANT	то	DD					REVISIONS	CONSUL	ANT	TO	DD	REF	ERENCE DRAWINGS



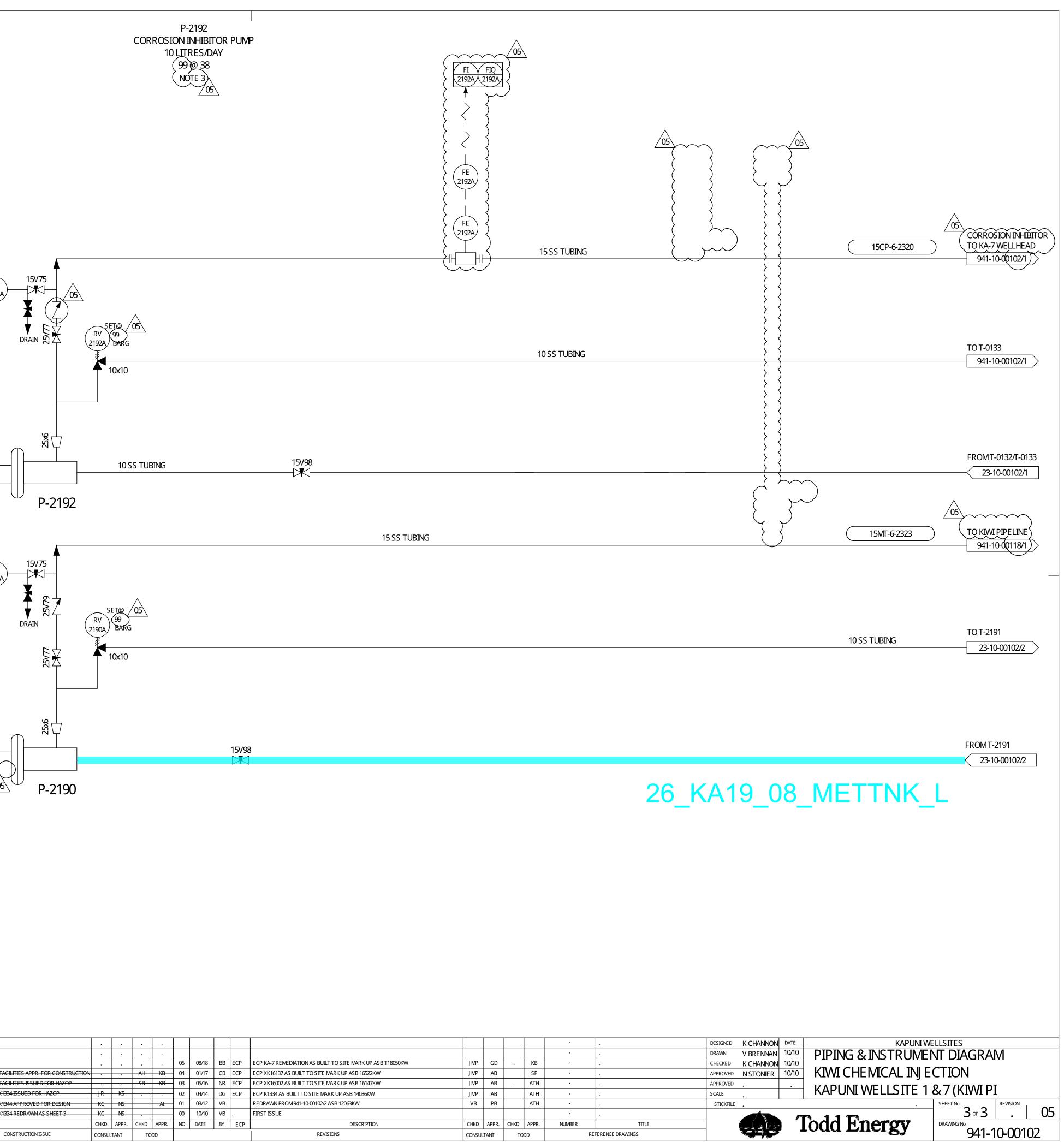

TRUCTION ISSUE	CONSUL	TANT	ST	OS					REVISIONS	CONSUL	TANT	STC	DS	REI	FERENCE DRAWINGS
	CHKD	APPR.	CHKD	APPR.	NO	DATE	BY	EWR	DESCRIPTION	CHKD	APPR.	CHKD	APPR.	NUMBER	TITLE
SSUED FOR HAZOP	КС	NS		AI	00	07/08	VB	ECP	FIRST ISSUE	CSM					•
APPROVED FOR CONSTRUCTION	GD	AP	•	AI	01	12/08	DW	ECP	ECP K1152 AS BUILT TO SITE MARK UP ASB 8198KW	VB	PWM		AI		
RE-ISSUED FOR HAZOP	MK	KS			02	05/10	BA	ECP	ECP K1379 AS BUILT TO SITE MARK UP ASB 10094KW	VB	AP		AI	•	•
RE-ISSUED APPROVED FOR DESI	GNMK	KS	•	AI	03	10/10	MH	ECP	ECP K1400 AS BUILT TO SITE MARK UP ASB 10222KW	VB	AP		AI		
APPROVED FOR CONSTRUCTION	MF	PB	•	ATH	04	01/11	KP	ECP	ECP K1379 AS BUILT TO SITE MARK UP ASB 10250KW	VB	LM		AI	•	•
RE-ISSUED APPROVED FOR CON	T.IRG	MK	•	ATH	05	09/11	SG	ECP	ECP K1392 AS BUILT TO SITE MARK UP ASB 11199KW	VB	JS		AI		
RE-APPROVED FOR CONSTRUCT	IDNJ R	AB		ATH	06	04/13	JC	ECP	ECP K1544 AS BUILT TO SITE MARK UP ASB 13063KW	JMP	AC		ATH	•	•
PPROVED FOR CONSTRUCTION	JR	AB		ATH	07	04/14	DG	ECP	ECP K1334 AS BUILT TO SITE MARK UP ASB 14036KW	JMP	AB		ATH	•	•


			-				_								
APPR. FOR CONSTRUCTION	ML	- GD-		SF										•	
PPROVED FOR DESIGN	ML	SG		SF										•	
CT ISSUED FOR HAZOP	SG	ML			05	08/18	BB	ECP	ECP K1729 AS BUILT TO SITE MARK UP ASB T18022KW	JMP	GD		KB	•	
CT ISSUED FOR REVIEW	ML	SG			04	03/15	DG	ECP	ECP K1334 AS BUILT TO SITE MARK UP ASB 15019KW	JMP	AB		ATH	•	•
E-ISSUED APP FOR CONSTRUCT	IOBRG	MK	•	ATH	03	04/14	DG	ECP	ECP K1334 AS BUILT TO SITE MARK UP ASB 14036KW	JMP	AB		ATH	•	•
PPROVED FOR CONSTRUCTION	-MF-			ATH	02	01/11	KP	ECP	ECP K1379 AS BUILT TO SITE MARK UP ASB 10250KW	VB	LM		AI		
PPROVED FOR DESIGN	MK	KS	•	AI	01	11/08	MH	ECP	ECP K1152 AS BUILT TO SITE MARK UP ASB 8198KW	VB	LS		AI	•	•
					A0	08/07	VB		FIRST ISSUE					•	
	CHKD	APPR.	CHKD	APPR.	NO	DATE	BY	ECP	DESCRIPTION	CHKD	APPR.	CHKD	APPR.	NUMBER	ΤΠLE
TRUCTION ISSUE	CONSUL	TANT	TO	DD					REVISIONS	CONSUL	ΓΑΝΤ	TOE	DD	REI	ERENCE DRAWINGS


			TO SSL-2852A
ance away			
KA19_		SASPP2_V (150HG-6CS-2' (150HG-6CS-2' (150HG-6-23) 150V632 AG UG	05 1326 GAS TO PIPELINE 941-10-00106/1
		AG UG	
		50FL-1-2330	TO KIWI DEPRESSURISATION LINE 941-10-00126/1
DESIGNED DRAWN CHECKED APPROVED	. DATE V BRENNAN 08/07 N STONIER 08/07 D LIND 08/07	PIPING & INSTRUME KA-7 LTS	
SCALE STICKFILE		KAPUNI WELLSITE K	A-1&7 SHEET NO 2 OF 2 . 05 DRAWING NO 941-10-00121



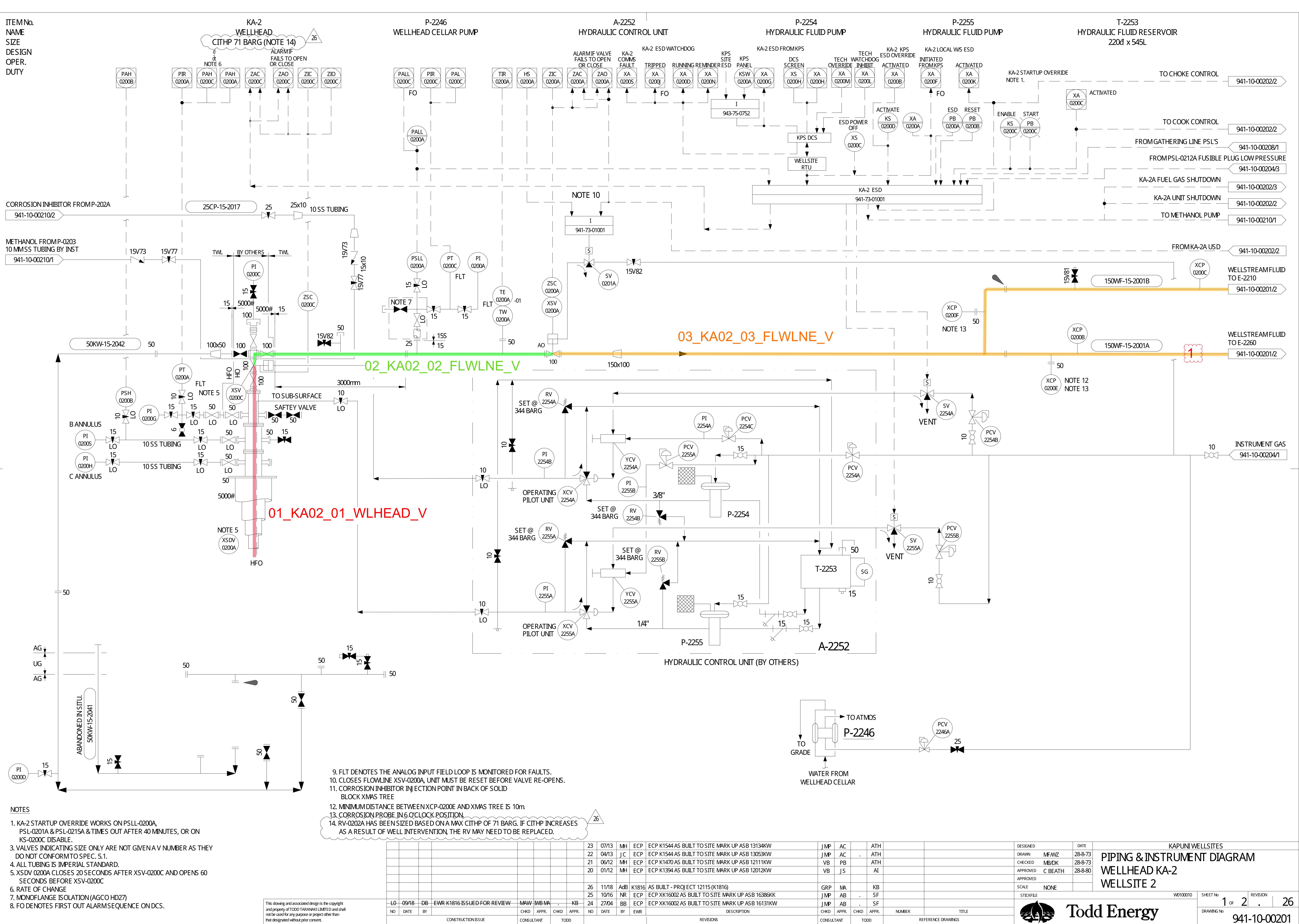
ITEM No. NAME SIZE		
DESIGN BAR(G) @ éC OPER.		
DUTY		
2164A		
FO		
START-UP GAS		25
START-UP GAS (25FG-6-2166) 941-10-00106/1		─── ─
	(PI 2160A
	15V7	
	15V81	₩ _
VECTOR TREATED GAS UG AG FROM KPS A-5004 (150HG-6-5124)	4	15V1
943-10-00002/2		Ţ,
	IF 036	53
TO WELLSITE ESD LOGIC		
941-10-00106/1		
		150%
(150HG-6-2304)		
23_KA19_07_\		
		JJS ECP K1334 RE-ISSUED FOR H 2 MH ECP K1334 RE-ISSUED FOR H
PROJECT NOTES NOTES: 1. FLOWSHEET SHOWN IN RECYCLED GAS MODE		3 JJS ECP K1334 RE-ISSUED FOR H 2 MH ECP K1334 RE-ISSUED FOR H 2 SG ECP K1334 RE-ISSUED FOR H 2 SG ECP K1334 RE-ISSUED FOR H 2 VB ECP K1334 RE-ISSUED FOR H
PROJECT NOTES		3 JJS ECP K1334 RE-ISSUED FOR H 2 MH ECP K1334 RE-ISSUED FOR H 2 SG ECP K1334 RE-ISSUED FOR H 2 SG ECP K1334 RE-ISSUED FOR H 2 VB ECP K1334 RE-ISSUED FOR H 3 MH ECP K1334 RE-APPROVED FOR H 3 MH ECP K1334 RE-APPROVED FOR H 3 J.C ECP K1334 RE-APPROVED FOR H



	•				07	01/11	KP	ECP	ECP K1379 AS BUILT TO SITE MARK UP ASB 10250KW	VB	LM	•	AI		•
	•				06	07/09	MH	ECP	ECP K1328 AS BUILT TO SITE MARK UP ASB 9155KW	VB	PWM	•	AI		
	•				05	12/08	MH	ECP	ECP K1282 AS BUILT TO SITE MARK UP ASB 8214KK	VB	LS	•	AI		•
	•											•			•
APPROVED FOR CONSTRUCTION	MK	PWM	•		11	08/19	SH	ECP	ECP K1720 AS BUILT TO SITE MARK UP ASB T18006KK	JMP	AB	•	MW		•
APPROVED FOR DESIGN	MK	PWM		AI	10	03/17	BB	ECP	ECP XK17172 AS BUILT TO SITE MARK UP ASB 17079KK	JMP	TD		SF		
SSUED FOR CONSTRUCTION	LP	CRP	ECT	КЈЕ	09	04/12	LMM	ECP	ECP K1334 AS BUILT TO SITE MARK UP ASB 12058KW	VB	PB	•	ATH		•
APPROVED FOR DESIGN	MW	CRP	ECT	KJ E	08	03/12	MH	ECP	ECP K1470 AS BUILT TO SITE MARK UP ASB 12049KW	VB	JS		AI		
	CHKD	APPR.	CHKD	APPR.	NO	DATE	BY	ECP	DESCRIPTION	CHKD	APPR.	CHKD	APPR.	NUMBER	ΤΠLE
STRUCTION ISSUE	CONSUL	TANT	TO	DD					REVISIONS	CONSULT	TANT	TO	DD	REF	ERENCE DRAWINGS

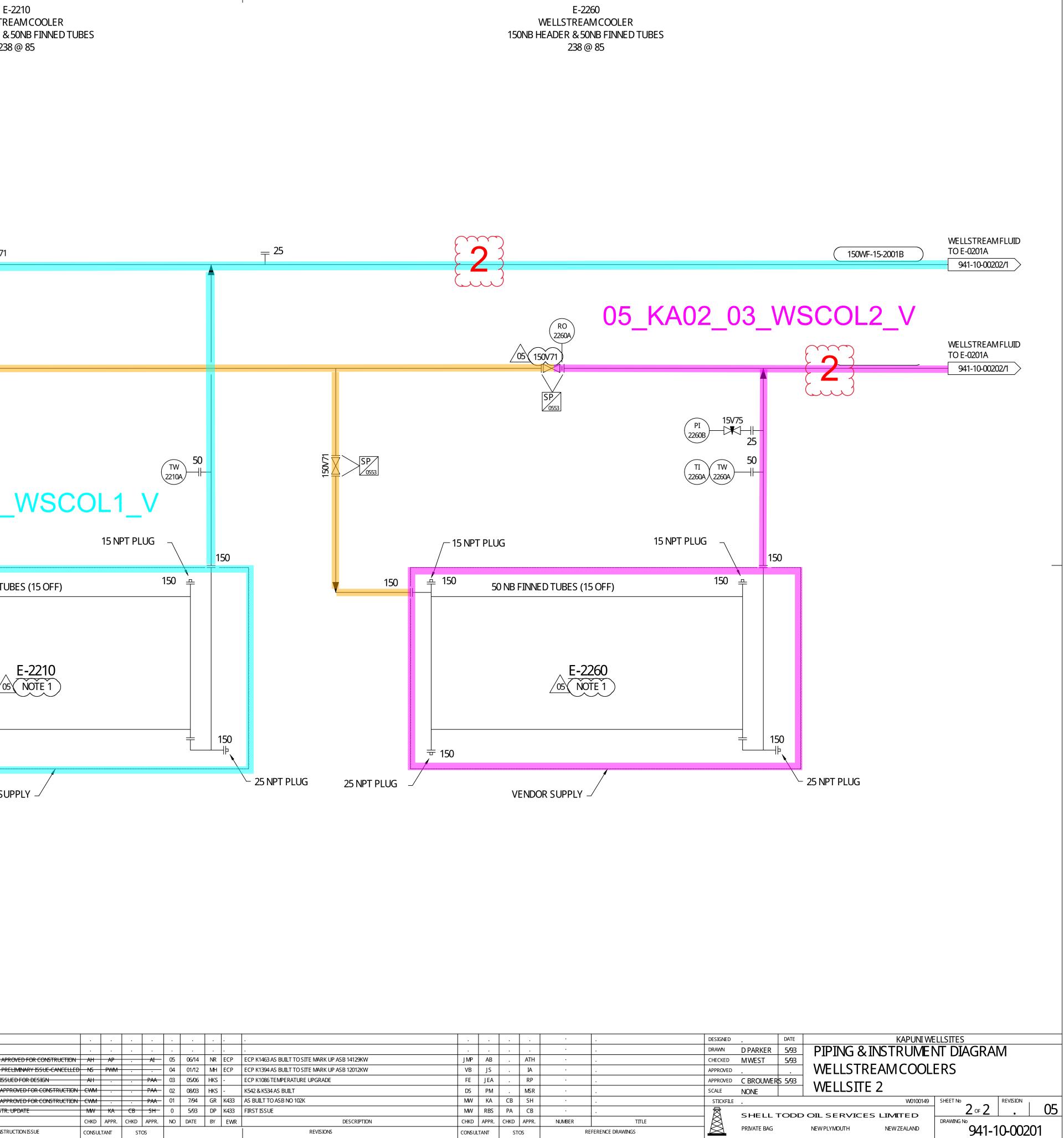
				_											
PPROVED FOR DESIGN	ML	SG		SF-	07	07/08	MH	ECP	ECP K1245 AS BUILT TO SITE MARK UP ASB 8126KW	VB	PWM		AI		
ECT ISSUED FOR HAZOP	SG	ML		<u> </u>											•
APPROVED FOR DESIGN	GD	JA	•	AI	13	08/19	BB	ECP	ECP XK18002 AS BUILT TO SITE MARK UP ASB T19007KK	JMP	AB		MW		•
APPROVED FOR CONSTRUCTION	JR	AB		ATH	12	08/18	BB	ECP	ECP K1729 & KA-7 REMEDIATION AS BUILT TO ASB T18022KW & T18050KW	JMP	GD		KB		•
					11	01 <i>/</i> 17	CB	ECP	ECP XK16137 AS BUILT TO SITE MARK UP ASB 16522KW	JMP	AB		SJ		
FIES APPR. FOR CONSTRUCTION	•	,	AH	КВ	10	04/14	DG	ECP	ECP K1334 AS BUILT TO SITE MARK UP ASB 14036KW	JMP	AB		ATH		
TES ISSUED FOR HAZOP	•	•	SB	КВ	09	02/14	MH	ECP	ECP K1459 AS BUILT TO SITE MARK UP ASB 13285KW	JMP	AB		ATH		
APPR. FOR CONSTRUCTION	ML	GD		SF-	08	12/08	DW	ECP	ECP K1152 AS BUILT TO SITE MARK UP ASB 8198KW	VB	PWM		AI		
	CHKD	APPR.	CHKD	APPR.	NO	DATE	BY	ECP	DESCRIPTION	CHKD	APPR.	CHKD	APPR.	NUMBER	TITLE
TRUCTION ISSUE	CONSUL	TANT	то	DD					REVISIONS	CONSUL	TANT	TOE	D	REF	ERENCE DRAWINGS

ITEM No. NAME SIZE DESIGN BARG @ éC OPER. DUTY		P-2190 METHANOL PUMP 400 LITRES/DAY 99 @ 38 NOTE 3 05	
			(PI 2192A)
UTILITY AIR 941-10-00102/1	15 SS TUBING		PCV 2192A NOTE 2
UTILITY AIR 941-10-00102/2	15 SS TUBING		PCV 2190A NOTE 2 05
NOTES: 1. ALL TUBING IS IMPERIAL STAND 2. 6NPT IS SUPPLIED WITH PUMP. 3. TEXSTEAM PUMPS DESIGNEDFO PRESSURERESTRICTED TO 99 B 4. WIRELESS INSTRUMENT.	ARD. OR PRESSURES UP TO 345 BARG. ARG FOR HYDROTEST REQUIREMENTS.	This drawing is confidential and is the property of TODD ENERGY. It must not be disclosed to any third party or lent without written consent from TODD ENERGY.

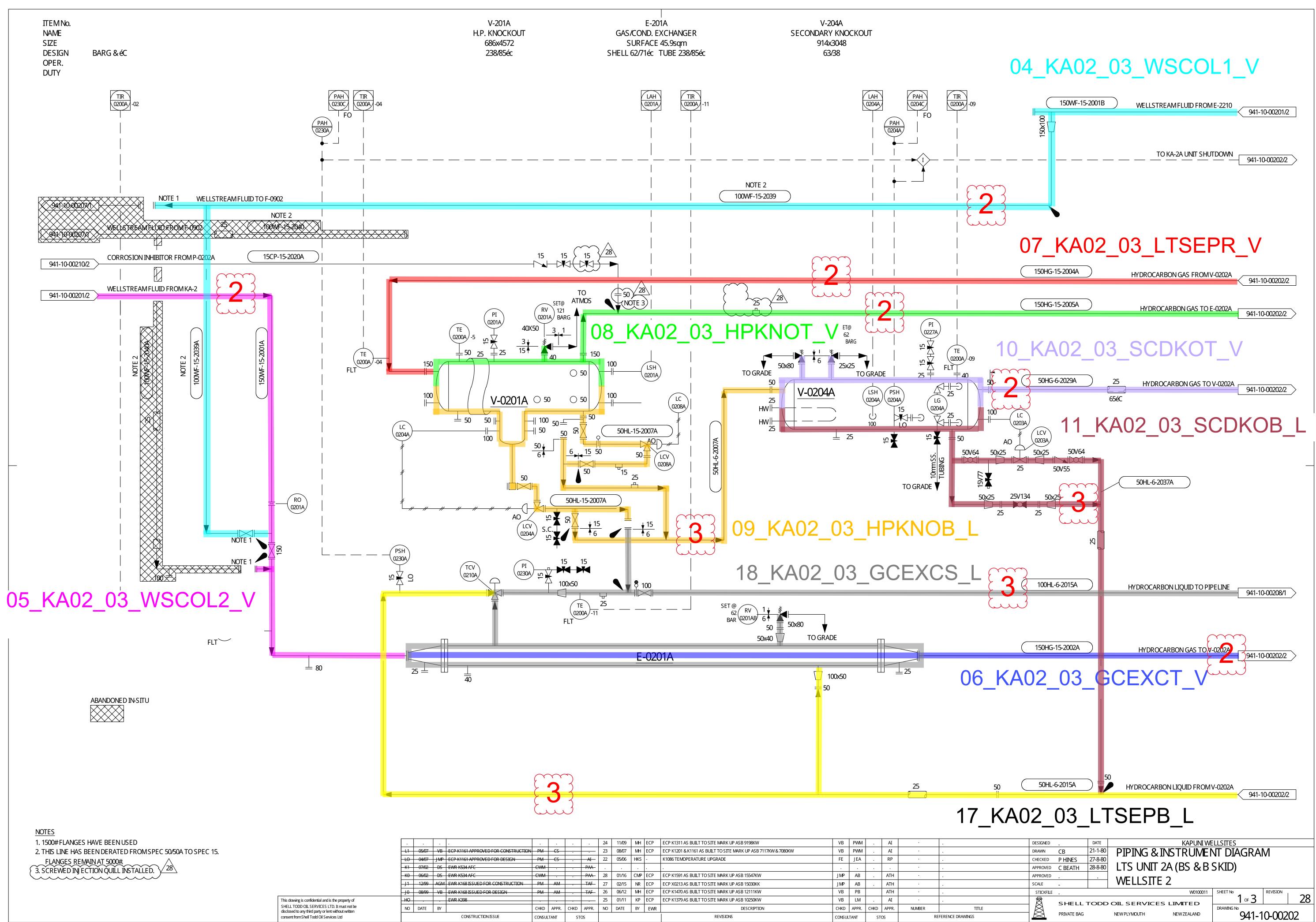


		•												•	•
		•												•	•
					05	08/18	BB	ECP	ECP KA-7 REMEDIATION AS BUILT TO SITE MARK UP ASB T18050KW	JMP	GD	•	KB	•	•
ITIES APPR. FOR CONSTRUCTION	•	•	AH	КВ	- 04	01/17	CB	ECP	ECP XK16137 AS BUILT TO SITE MARK UP ASB 16522KW	JMP	AB		SF	•	•
ITIES ISSUED FOR HAZOP	•	•	SB	КВ	- 03	05/16	NR	ECP	ECP XK16002 AS BUILT TO SITE MARK UP ASB 16147KW	JMP	AB	•	ATH	•	•
ISSUED FOR HAZOP	JR	KS	•	· ·	02	04/14	DG	ECP	ECP K1334 AS BUILT TO SITE MARK UP ASB 14036KW	JMP	AB		ATH	•	
APPROVED FOR DESIGN	КС	NS		AI	01	03/12	VB		REDRAWN FROM 941-10-00102/2 ASB 12063KW	VB	PB		ATH	•	•
REDRAWN AS SHEET 3	КС	NS	•		00	10/10	VB		FIRST ISSUE					•	•
	CHKD	APPR.	CHKD	APPR.	NO	DATE	BY	ECP	DESCRIPTION	CHKD	APPR.	CHKD	APPR.	NUMBER	ΤΠLE
STRUCTION ISSUE	CONSUL	TANT	TO	DD					REVISIONS	CONSUL	TANT	TO	DD	RE	Ference drawings

Appendix 2. P&ID Sectionalisation for KA-2

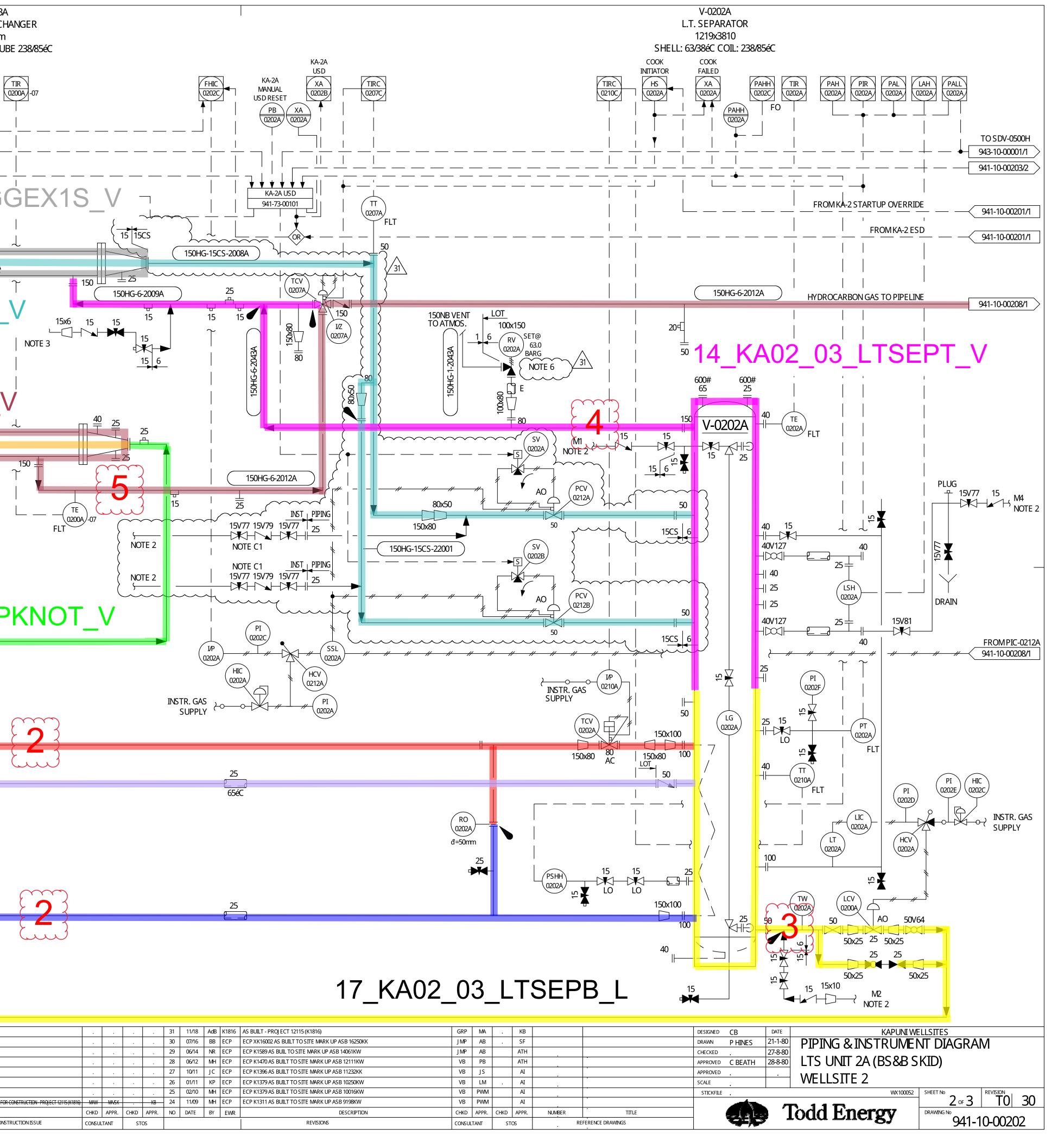


	\sim							$\overline{\ }$					
									23	07/13	MH	ECP	
									22	04/13	JC	ECP	
									21	06/12	MH	ECP	
									20	01/12	MH	ECP	
									26	11/18	AdB	K1816	
									25	10/16	NR	ECP	
n is the copyright	LO	09/18	DB	EWR K1816 ISSUED FOR REVIEW	MAW	IWB MA	•	KB	24	27/04	BB	ECP	
LIMITED and shall ject other than	NO	DATE	BY		CHKD	APPR.	CHKD	APPR.	NO	DATE	BY	EWR	
ent.				CONSTRUCTION ISSUE	CONSUL	TANT	то	DD					


REVISIONS	CONSUL	TANT	то	DD	RE	FERENCE DRAWINGS
DESCRIPTION	CHKD	APPR.	CHKD	APPR.	NUMBER	TΠLE
ECP XK16002 AS BUILT TO SITE MARK UP ASB 16131KW	JMP	AB	•	SF		
ECP XK16002 AS BUILT TO SITE MARK UP AS B 16386KK	JMP	AB	•	SF		
AS BUILT - PROJ ECT 12115 (K1816)	GRP	MA		KB		
ECP K1394 AS BUILT TO SITE MARK UP ASB 12012KW	VB	JS		AI		
ECP K1470 AS BUILT TO SITE MARK UP ASB 12111KW	VB	PB		ATH		
ECP K1544 AS BUILT TO SITE MARK UP AS B 13053KW	JMP	AC		ATH		

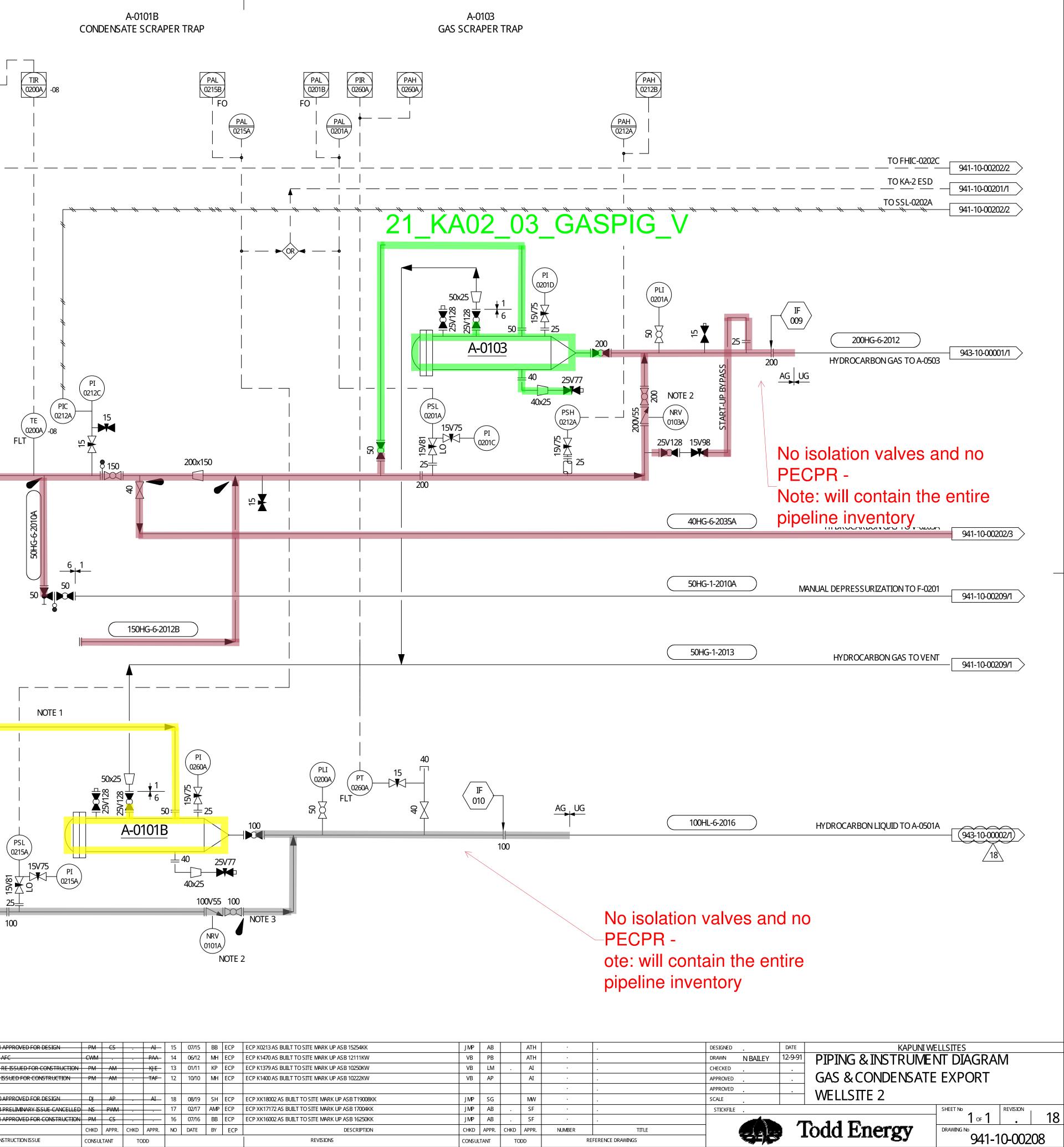
ITEM No. NAME SIZE DESIGN BARG @ éC OPER. DUTY (RO 2210A) WELLSTREAM FLUID FROM KA-2 05 150WF-15-2001B 1 150V71 941-10-00201/1 SP 0553 JJJ WELLSTREAM FLUID FROM KA-2 05 150WF-15-2001A 941-10-00201/1 03_KA02_03_FLWLNE_V 04_KA02_03_WSCOL1_V - 15 NPT PLUG <u>수</u> 150 150 50 NB FINNED TUBES (15 OFF) 堂 150 25 NPT PLUG VENDOR SUPPLY ′05∖ NOTES: 1. RAILED CURTAINS INSTALLED ON COOLER TO CONTROL AIR FLOW. \..... E0 08/11 VB ECP K1394 A -D0 - 03/08 - KN - ECP K1154 PI - CO - 03/03 - 1 IKS | EWR K542 ISS B1 07/02 DS EWR K534 AF B0 05/02 HKS EWR K534 AP A2 7/94 GR K433 CONST This drawing is confidential and is the property of NO DATE BY SHELL TODD OIL SERVICES LTD. It must not be disclosed to any third party or lent without written

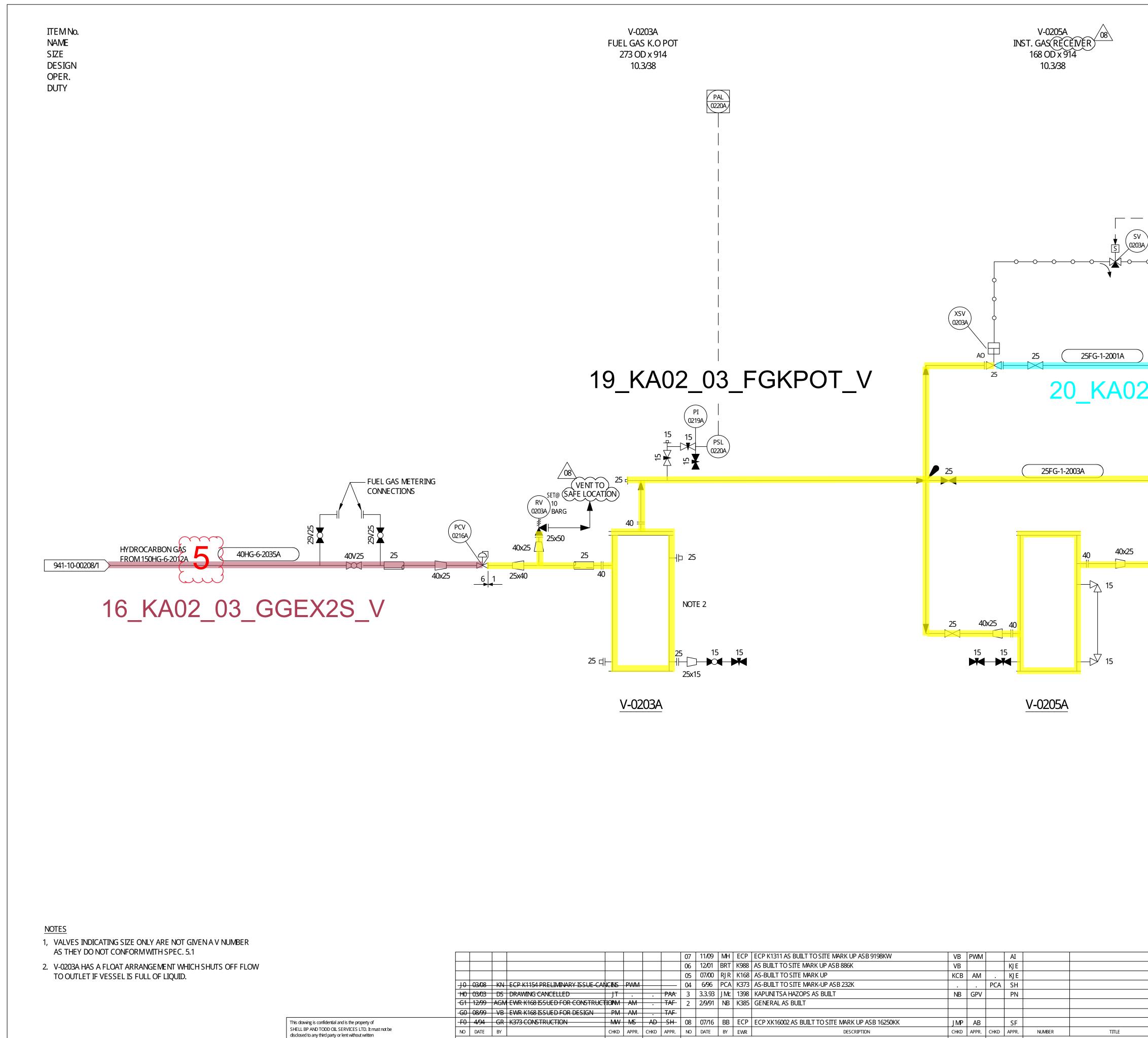
consent from Shell Todd Oil Services Ltd



														•	•
						•								•	•
CP K1394 APROVED FOR CONSTRUCTION	AH	AP	•	AI	05	06/14	NR	ECP	ECP K1463 AS BUILT TO SITE MARK UP ASB 14129KW	JMP	AB		ATH		
CP K1154 PRELIMINARY ISSUE-CANCELLED	NS	PWM	•	· · ·	04	01/12	MH	ECP	ECP K1394 AS BUILT TO SITE MARK UP ASB 12012KW	VB	JS		A	•	•
WR K542 ISSUED FOR DESIGN	AH	•	•	PAA	03	05/06	HKS	-	ECP K1086 TEMPERATURE UPGRADE	FE	JEA		RP	•	•
WR K534 APPROVED FOR CONSTRUCTION	CWM	•	•	PAA	02	08/03	HKS	-	K542 & K534 AS BUILT	DS	PM		MSR	•	
WR K534 APPROVED FOR CONSTRUCTION	CWM	•	•	PAA	01	7/94	GR	K433	AS BUILT TO ASB NO 102K	MW	KA	CB	SH	•	•
433 CONSTR. UPDATE	MW	KA	СВ	SH	0	5/93	DP	K433	FIRST ISSUE	MW	RBS	PA	СВ		•
	CHKD	APPR.	CHKD	APPR.	NO	DATE	BY	EWR	DESCRIPTION	CHKD	APPR.	CHKD	APPR.	NUMBER	ΤΠLE
CONSTRUCTION ISSUE	CONSUL	TANT	ST	OS					REVISIONS	CONSUL	TANT	STO	DS	REI	FERENCE DRAWINGS

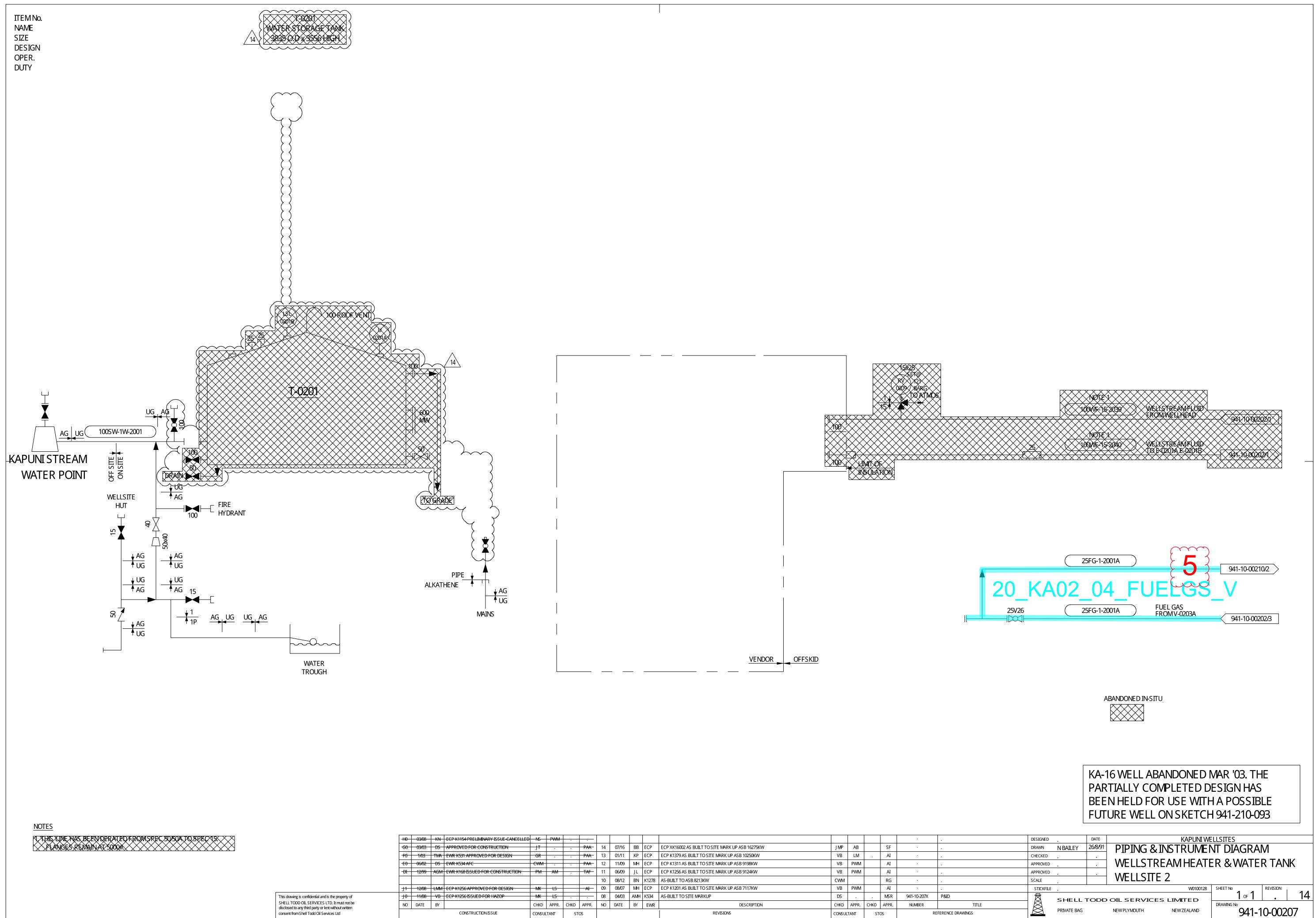
ITEM No. NAME	E-0202A GAS/GAS EXCHANGER	E-0203A GAS/GAS EXCH
SIZE DESIGN BARG & éC	62sqm SHELL 62/71éC TUBE 238/85éC	22sqm SHELL 62/71éC TUE
OPER. DUTY		TIR
		0200A -10 0200A -03
941-10-00208/1 FROM FIR-0200A		
941-10-00202/1 FROM PSH-0230A & PSH-0204A		
941-10-00201/1 FROM KA2 ESD		
941-10-00201/1 TO FLOWLINE SAFETY VALVE SV-0201A		2_03_G
	150HG-15-2030A	مد مد E-0203A
र्भ स्	$25 \pm 1 \pm 40$	<u>Γ</u> Γ
	13 KA02 03 G	GEX2T
भ न्		
	16_KA02_03_GC	
25	E-0202A	
		γ γ
12 KA02 03 GGE	EX1T V	
HYDROCARBON GAS FROMV-0201A	150HG-15-2005A 08_KA02	2_03_HF
941-10-00202/1 HYDROCARBON GAS FROM U-0201A		
07_KA02_0	03_LTSEPR_V	
WELLSTREAM FLUID TO V-0201A	150HG-15-2004A	
941-10-00202/1		
941-10-00202/1 HYDROCARBON GAS FROMV-0204A	50HG-6-2029A	
10_KA02_03	_SCDKOT_V	
		TE 0200A)-03
WELLSTREAM FLUID FROM E-0201A	150HG-15-2002A	FLT
06 KA02 03 0	GCEXCT V	
	F	TE 0200A -10
HYDROCARBON LIQUID TO TCV-0210A	50HL-6-2015A	
NOTES 1. VOID.		· · · · · · · · · · · · · · · · ·
2. FOR CONTINUATION OF METHANOL INJ ECTION SEE DRG 941-10-210/1. 3. FOR CONTINUATION OF CHEMICAL INJ ECTION SEE DRG 941-10-210/2.		
 4. FOR CONTINUATION OF INSTR. AIR SEE DRG 941-10-204/1. 5. WHEN X-OVER SELECTED, EITHER LTS USD WILL SHUT THE OTHER. 6. PCV-0212A/B SIZED TO LIMIT HP BREAKTHROUGH FOR 71 BARG 	31 This drawing is confidential and is the property of	· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
UPSTREAM PRESSURE (MAX CTHP).	SHELL TODD OIL SERVICES LTD. It must not be disclosed to any third party or lent without written consent from Shell Todd Oil Services Ltd	NO DATE BY CONS

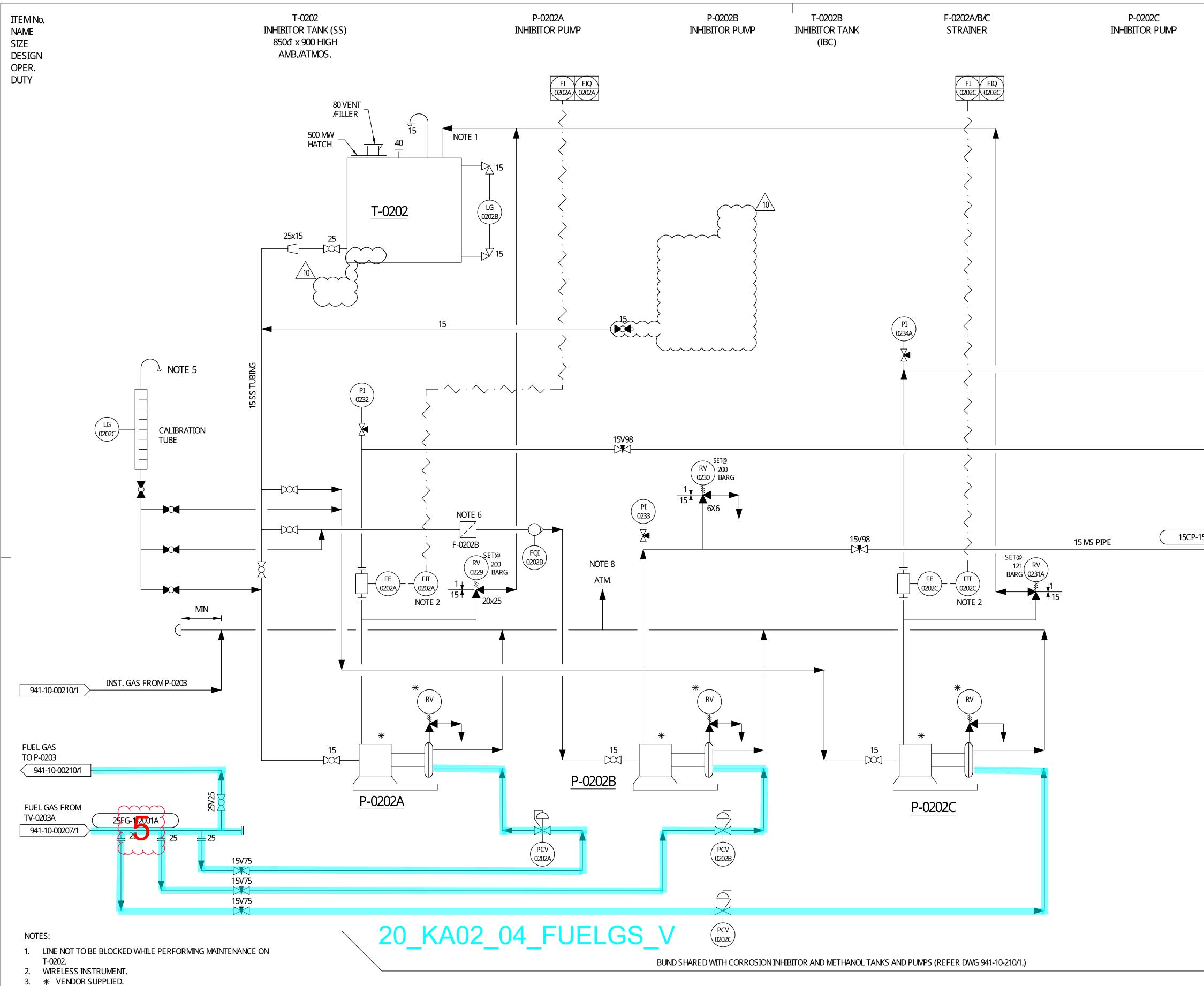



					31	11/18	AdB	K1816	AS BUILT - PROJECT 12115 (K1816)	GRP	MA		KB		
					30	07/16	BB	ECP	ECP XK16002 AS BUILT TO SITE MARK UP ASB 16250KK	JMP	AB		SF		
					29	06/14	NR	ECP	ECP K1589 AS BUIL TO SITE MARK UP ASB 14061KW	JMP	AB		ATH		
					28	06/12	MH	ECP	ECP K1470 AS BUILT TO SITE MARK UP ASB 12111KW	VB	PB		ATH		•
					27	10/11	JC	ECP	ECP K1396 AS BUILT TO SITE MARK UP ASB 11232KK	VB	JS		AI		•
					26	01/11	KP	ECP	ECP K1379 AS BUILT TO SITE MARK UP ASB 10250KW	VB	LM		AI		•
					25	02/10	MH	ECP	ECP K1379 AS BUILT TO SITE MARK UP ASB 10016KW	VB	PWM		AI		
FOR CONSTRUCTION - PROJECT 12115 (K1816)	MAW	MASK		KB	- 24	11/09	MH	ECP	ECP K1311 AS BUILT TO SITE MARK UP ASB 9198KW	VB	PWM		AI		•
	CHKD	APPR.	CHKD	APPR.	NO	DATE	BY	EWR	DESCRIPTION	CHKD	APPR.	CHKD	APPR.	NUMBER	TΠLE
INSTRUCTION ISSUE	CONSUL	LTANT	ST	'OS					REVISIONS	CONSUL	TANT	STO	DS	. REF	ERENCE DRAWINGS

ITEM No. NAME SIZE DESIGN OPER. DUTY	
16_KAO2_03_GGEX2S_V 1941-10-002022 150HG-6-2012A	tot for the second seco
18_KA02_03_GCEXCS	O3_CONPIG_L
TODD ENERGY.	E0 04/07 J MP ECP K1161 AP -D0 06/02 DS EWR K534 AF4 -C2 03/00 J K EWR K168 RE -C1 12/99 AGM EWR K168 ISS -G0 10/10 LMM ECP K1120 AP -F0 03/08 KN ECP K1154 PR -F0 03/08 KN ECP K1161 AP It must not be hird party or lent without written NO DATE BY

consent from TODD ENERGY.


CP K1161 APPROVED FOR DESIGN	PM	CS	•	AI-	15	07/15	BB	ECP	ECP X0213 AS BUILT TO SITE MARK UP ASB 15254KK	JMP	AB		ATH	•	•
AR K534 AFC	CWM	•	•	PAA_	14	06/12	MH	ECP	ECP K1470 AS BUILT TO SITE MARK UP ASB 12111KW	VB	PB		ATH	•	•
WR K168 RE-ISSUED FOR CONSTRUCTION	PM	AM	•	KJ E	13	01/11	KP	ECP	ECP K1379 AS BUILT TO SITE MARK UP ASB 10250KW	VB	LM		AI	•	•
WR K168 ISSUED FOR CONSTRUCTION	PM	AM	•	TAF	12	10/10	MH	ECP	ECP K1400 AS BUILT TO SITE MARK UP ASB 10222KW	VB	AP		AI	•	•
														•	•
CP K1220 APPROVED FOR DESIGN	DJ	AP		AI_	18	08/19	SH	ECP	ECP XK18002 AS BUILT TO SITE MARK UP ASB T19008KK	JMP	SG		MW	•	
CP K1154 PRELIMINARY ISSUE-CANCELLED	NS	PWM	•	· · ·	17	02/17	AMP	ECP	ECP XK17172 AS BUILT TO SITE MARK UP ASB 17004KK	JMP	AB		SF	•	•
CP K1161 APPROVED FOR CONSTRUCTION	PM-	CS	•	· · ·	16	07/16	BB	ECP	ECP XK16002 AS BUILT TO SITE MARK UP ASB 16250KK	JMP	AB		SF	•	•
	CHKD	APPR.	CHKD	APPR.	NO	DATE	BY	ECP	DESCRIPTION	CHKD	APPR.	CHKD	APPR.	NUMBER	TITLE
CONSTRUCTION ISSUE	CONSUL	TANT	то	DD					REVISIONS	CONSUL	TANT	TO	DD	RE	FERENCE DRAWINGS


consent from Shell BP and Todd Oil Services Ltd

					07	11/09	MH	ECP	ECP K1311 AS BUILT TO SITE MARK UP ASB 9198KW	VB	PWM		AI		
					06	12/01	BRT	K988	AS BUILT TO SITE MARK UP ASB 886K	VB			KJ E		
					05	07/00	RJ R	K168	AS-BUILT TO SITE MARK UP	KCB	AM	•	KJ E		
1154 Preliminary Issue-Can	ICENS-	PWM			04	6/96	PCA	K373	AS-BUILT TO SITE MARK-UP AS B 232K			PCA	SH		
ING CANCELLED	JT	•	•	PAA	З	3.3.93	JMc	1398	Kapunitsa hazops as built	NB	GPV		PN		
168 ISSUED FOR CONSTRUCT	IOPM	AM	•	TAF	2	2/9/91	NB	K385	GENERAL AS BUILT						
168 ISSUED FOR DESIGN	PM	AM	•	TAF											
ONSTRUCTION	MW	MS	AD	- SH -	08	07/16	BB	ECP	ECP XK16002 AS BUILT TO SITE MARK UP ASB 16250KK	JMP	AB		SF		
	CHKD	APPR.	CHKD	APPR.	NO	DATE	BY	EWR	DESCRIPTION	CHKD	APPR.	CHKD	APPR.	NUMBER	TΠLE
ONSTRUCTION ISSUE	CONSUL	TANT	SB	PT					REVISIONS	CONSUL	TANT	SBI	т	RE	FERENCE DRAWINGS

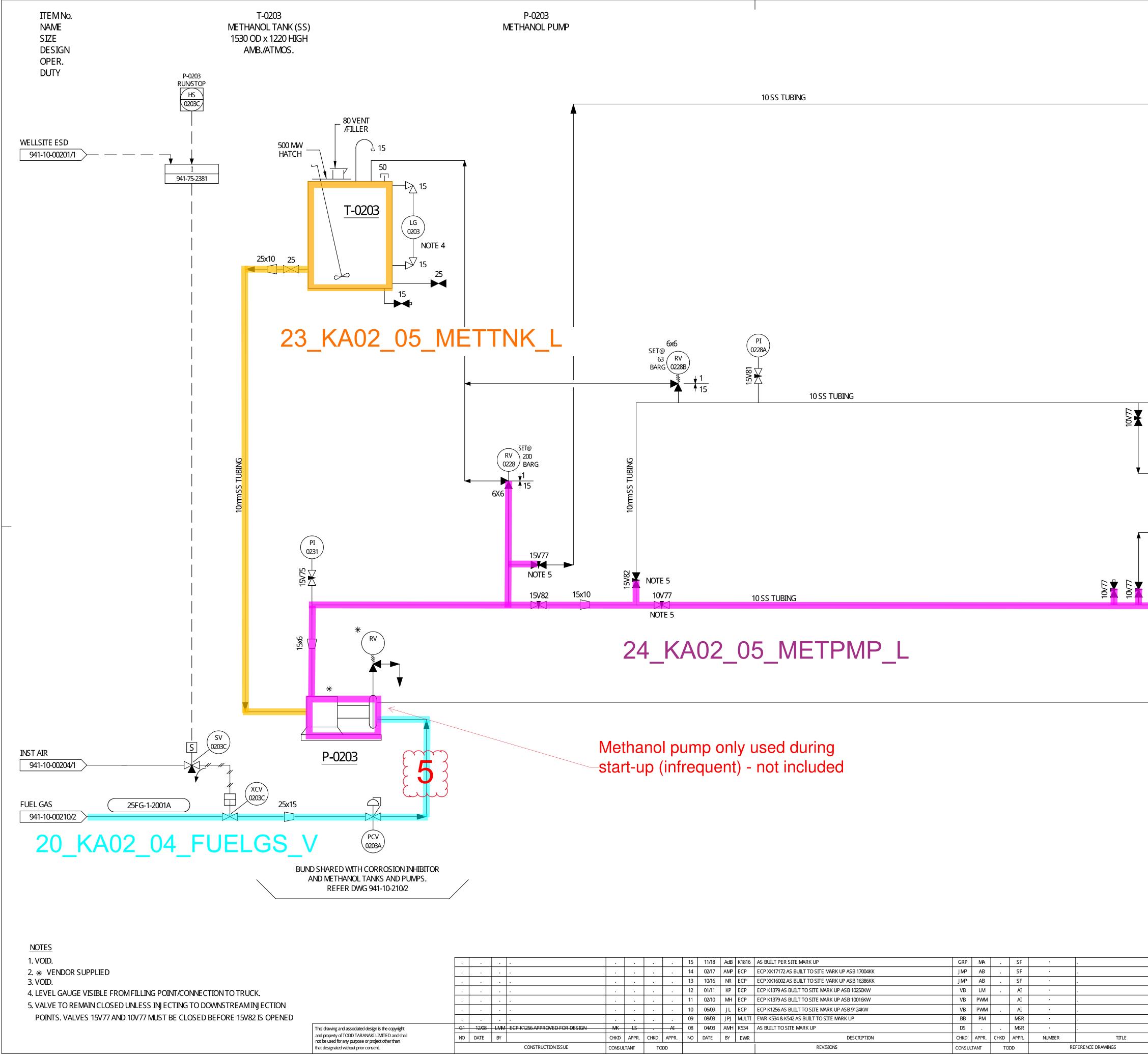
							KA-2 ESD -< 941-10-0020	1/1
A) 		o—o—	-00		-000	-0	INST. GAS -<941-10-00204	4/1
		Fl	JEL GAS	5 TO P-0202A P-	0202B(P-0202C)	3	941-10-00207	n
)								
2_0	4_	FU	EL	.GS_	V			
	-	1						
	25			INSTRUME	NT GAS TO UNIT 2	A	941-10-00204	n
[Designed Drawn Checked	CB P HINES	DATE 21-1-80 27-8-80		KAPUN & INSTRUM	ΈN	diagran	
4 4		C BEATH	28-8-80	FUEL & WELLSI	INSTRUMEI TE 2	NT (gas to un	JTT 2A
	STICKFILE		I	_		S	HEET No 3 OF 3	REVISION 08

		_	-				_	-							
PRELIMINARY ISSUE-CANCELLED	NS	PWM	•	<u> </u>										•	
FOR CONSTRUCTION	JT	•	•	PAA	14	07/16	BB	ECP	ECP XK16002 AS BUILT TO SITE MARK UP ASB 16275KW	JMP	AB		SF	•	•
APPROVED FOR DESIGN	GR	•	•	PAA	13	01/11	KP	ECP	ECP K1379 AS BUILT TO SITE MARK UP ASB 10250KW	VB	LM		AI	•	•
AFC	CWM	•	•	PAA	12	11/09	MH	ECP	ECP K1311 AS BUILT TO SITE MARK UP ASB 9198KW	VB	PWM		AI	•	•
ISSUED FOR CONSTRUCTION	PM	AM	•	TAF	11	06/09	JL	ECP	ECP K1256 AS BUILT TO SITE MARK UP ASB 9124KW	VB	PWM		AI	•	•
					10	08/12	BN	K1278	AS-BUILT TO ASB 8213KW	CWM			RG		
APPROVED FOR DESIGN	MK	LS		AI	09	08/07	MH	ECP	ECP K1201 AS BUILT TO SITE MARK UP ASB 7117KW	VB	PWM		AI	•	•
SISSUED FOR HAZOP	MK	LS	•	· ·	08	04/03	AMH	K534	AS-BUILT TO SITE MARKUP	DS	•	•	MSR	941-10-207X	P&ID
	CHKD	APPR.	CHKD	APPR.	NO	DATE	BY	EWR	DESCRIPTION	CHKD	APPR.	CHKD	APPR.	NUMBER	TITLE
ISTRUCTION ISSUE	CONSUL	TANT	ST	OS					REVISIONS	CONSUL	TANT	STO	DS	REI	ERENCE DRAWINGS

- 4. VOID.
- 5. ELEVATION OF CALIBRATION TUBE VENT TO BE GREATER THAN
- TANK VENTS. 6. STANDARD 40 MESH STRAINER
- 7. VOID.
- 8. TO SAFE LOCATION. TUBING DESIGN/SIZE AS PER DEP & PUMP VENDOR RECOMMENDATION.
- 9. CATCH PIT CONTENTS TO BE SAMPLED & CHECKED BEFORE RELEASE TO GRADE. IF CONTAMINATED, STANDARD OPERATING PROCEDURE FOR HANDLING/DISPOSING THE CONTAMINATED FLUID TO BE FOLLOWED.

E1 12/08 LMM ECP K1256 AP
 E0
 11/08
 VB
 ECP K1256 ISS
 -D0 03/08 KN ECP K1154 PRI -<u>C0</u> 03/03 DS APPROVED FC -B0 07/02 DS K534 AFC
 -A0
 4/94
 MW
 K373 CONSTUC

 NO
 DATE
 BY

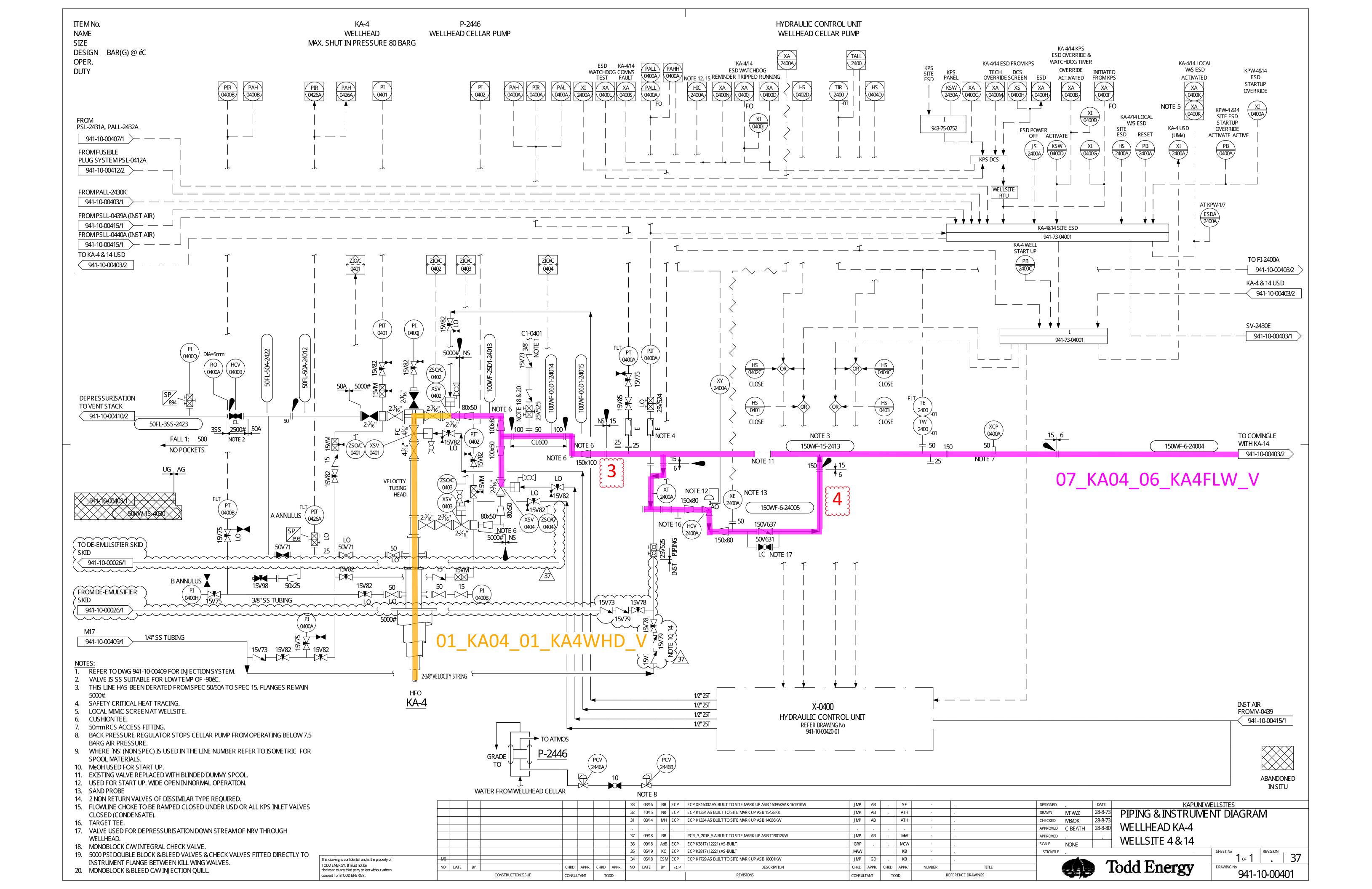

This drawing is confidential and is the property of

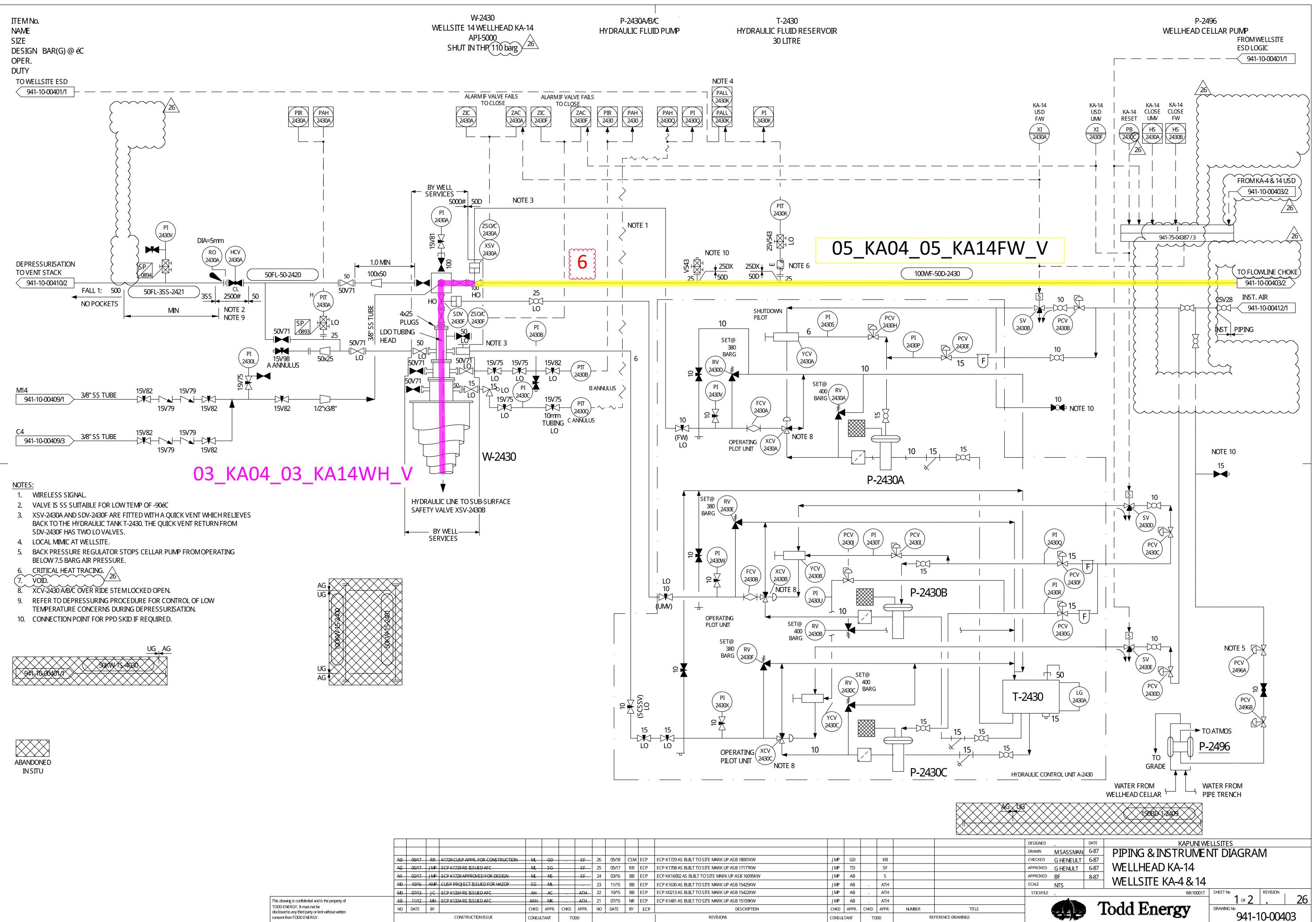
consent from Shell Todd Oil Services Ltd

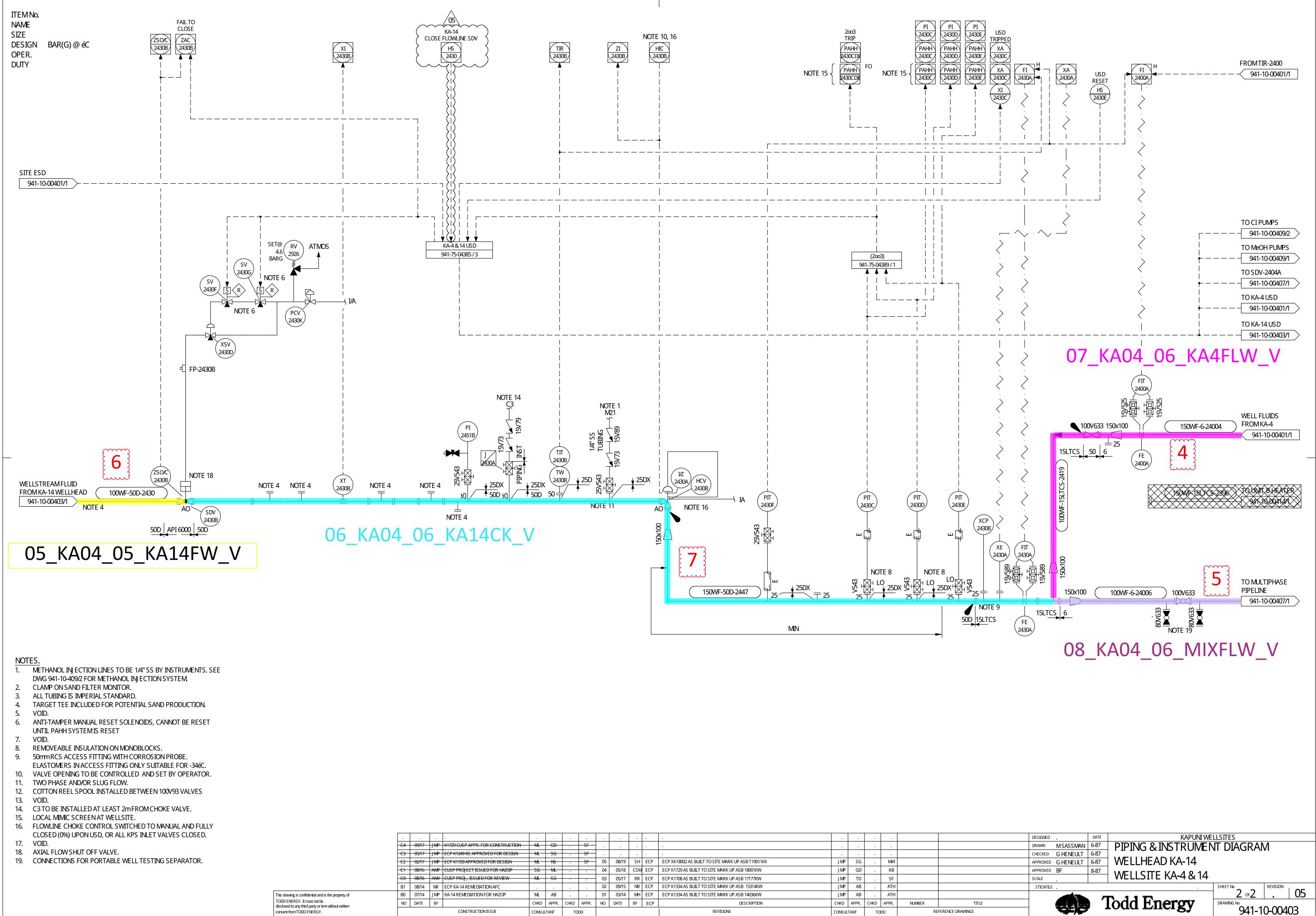
SHELL TODD OIL SERVICES LTD. It must not be disclosed to any third party or lent without written

- A0 4, NO DA	1/94 MW	K534 AFC K373 CONSTUCTION	CWM MW CHKD	MS APPR.	AD CHKD	PAA SH APPR.	09 08 NO	01/15 01/11 DATE			ECP K1575 AS BUILT TO SITE MARK UP ASB 15017KW ECP K1379 AS BUILT TO SITE MARK UP ASB 10250KW DESCRIPTION	J MP VB CHKD	AB LM APPR.	CHKD	ATH AI APPR.	NUMBER	
-A04/			CVVIVI	MS	AD							,		•		•	· ·
	7/02 DS	K534 AFC	CWM	•		PAA	09	01/15	NR	ECP	ECP K1575 AS BUILT TO SITE MARK UP ASB 15017KW	JMP	AB	•	ATH	•	•
-B0 07																	
- C0 - 03	3/03 DS	APPROVED FOR CONSTRUCTION	_ јт			PAA_	10	03/17	BB	ECP	ECP XK17172 AS BUILT TO SITE MARK UP ASB 17070KK	JMP	TD		SF		•
-D0 03	3/08 KN	ECP K1154 PRELIMINARY ISSUE-CANCELLED	NS	PWM	•	· · ·											•
- E0 - 11	1/08 VB	ECP K1256 ISSUED FOR HAZOP	MK	LS	•	· · ·	04	04/03	AMH	K534	AS BUILT TO SITE MARK UP	DS	•	•	MSR	•	•
-E1 12	2/08 LMIV	ECP K1256 APPRROVED FOR DESIGN	MK	LS		AI	05	08/03	J PJ	MULTI	EWR K534 & K542 AS BUILT TO SITE MARK UP	BB	PM		MSR	•	
-F0 06	6/11 VB	ECP K1324 APP. FOR DESIGN - NOT REQ'D	АКН	PW	· ·	AI	06	06/09	JL	ECP	ECP K1256 AS BUILT TO SITE MARK UP ASB 9124KW	VB	PWM		AI	•	
- G0 - 07	17/14 NR	ECP K1575 APPROVED FOR CONSTRUCTION	AB	ML	•	ATH	07	01/10	MH	ECP	ECP K1379 AS BUILT TO SITE MARK UP ASB 10008KW	VB	PWM		AI		

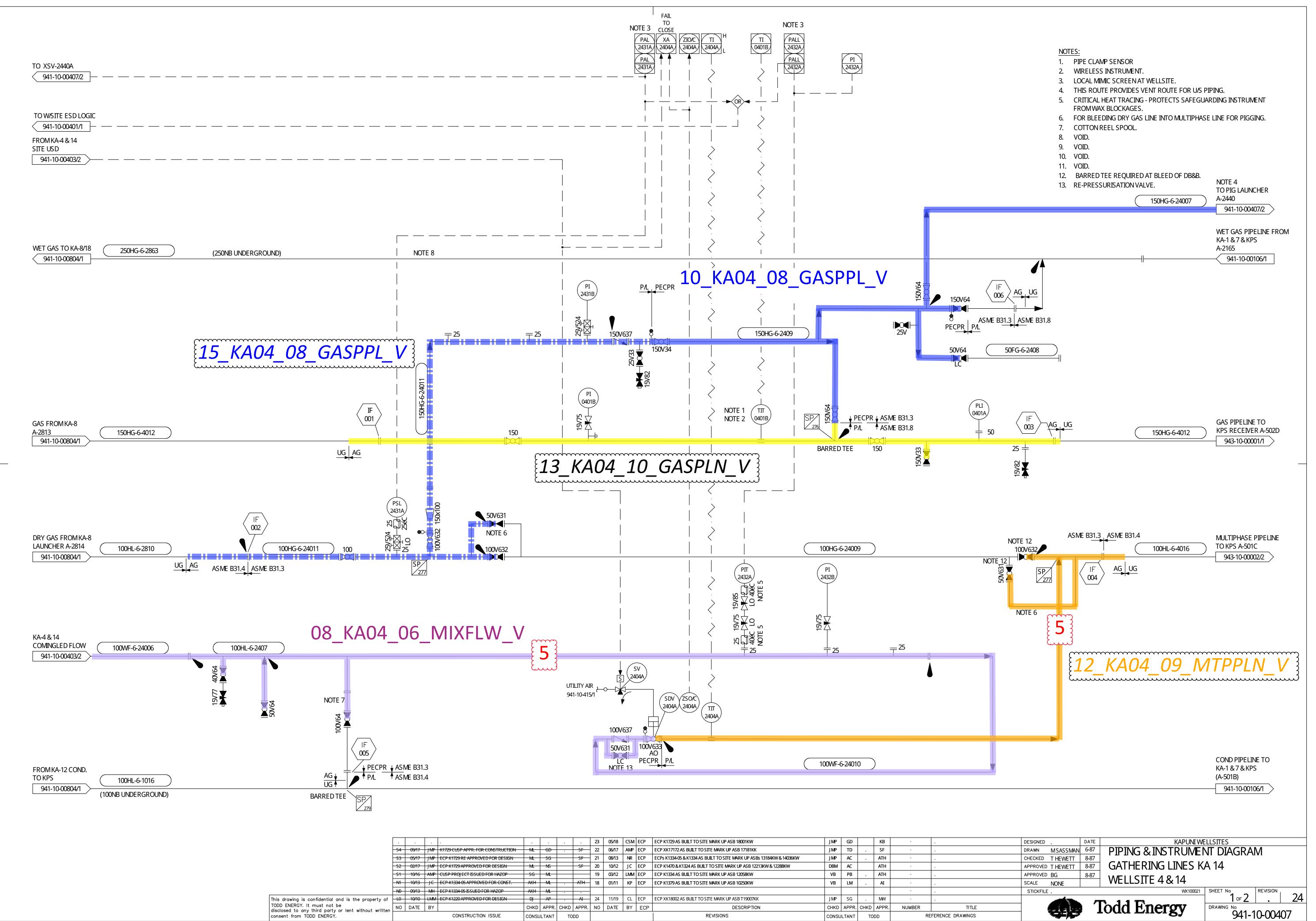
	5V98 ▼₹			(15CP-15	5-2020A		Corrosion In V-0201A OFF 	GAS (C1)
	TU	15X25 	NG	25CP-1	5-2017		Corrosion Inf Ka-2 Annulus (941-10-00201/	<u>(C2)</u>
15-2027A		15X10	NG	10 SS TUBING			Hemical injectio	DN
						- C3 V-	-0202A OFFGAS	202/2
					Note	E 9		
	DESIGNED	- Þ 0 •	DATE	•		- ► TO (
	DRAWN CHECKED APPROVED SCALE STICKFILE	N BAILEY	2/9/91		Cal INJ e Ite 2		SHEET NO 2 OF 2	1 REVISION 10 D-00210


				-				-							
	•				15	11/18	AdB	K1816	AS BUILT PER SITE MARK UP	GRP	MA		SF		
					14	02/17	AMP	ECP	ECP XK17172 AS BUILT TO SITE MARK UP ASB 17004KK	JMP	AB		SF	•	
		•	•		13	10/16	NR	ECP	ECP XK16002 AS BUILT TO SITE MARK UP ASB 16386KK	JMP	AB	•	SF	•	
			•		12	01/11	KP	ECP	ECP K1379 AS BUILT TO SITE MARK UP AS B 10250KW	VB	LM	•	AI		
					11	02/10	MH	ECP	ECP K1379 AS BUILT TO SITE MARK UP AS B 10016KW	VB	PWM		AI		
					10	06/09	JL	ECP	ECP K1256 AS BUILT TO SITE MARK UP AS B 9124KW	VB	PWM		AI		
					09	08/03	J PJ	MULTI	EWR K534 & K542 AS BUILT TO SITE MARK UP	BB	PM		MSR		
6 APPROVED FOR DESIGN	- MK-	LS	•	AI	- 08	04/03	AMH	K534	AS BUILT TO SITE MARK UP	DS		•	MSR		
	CHKD	APPR.	CHKD	APPR.	NO	DATE	BY	EWR	DESCRIPTION	CHKD	APPR.	CHKD	APPR.	NUMBE R	ΤΠLE
NSTRUCTION ISSUE	CONSUL	TANT	TO	DD					REVISIONS	CONSUL	TANT	TO	DD	REF	FERENCE DRAWINGS

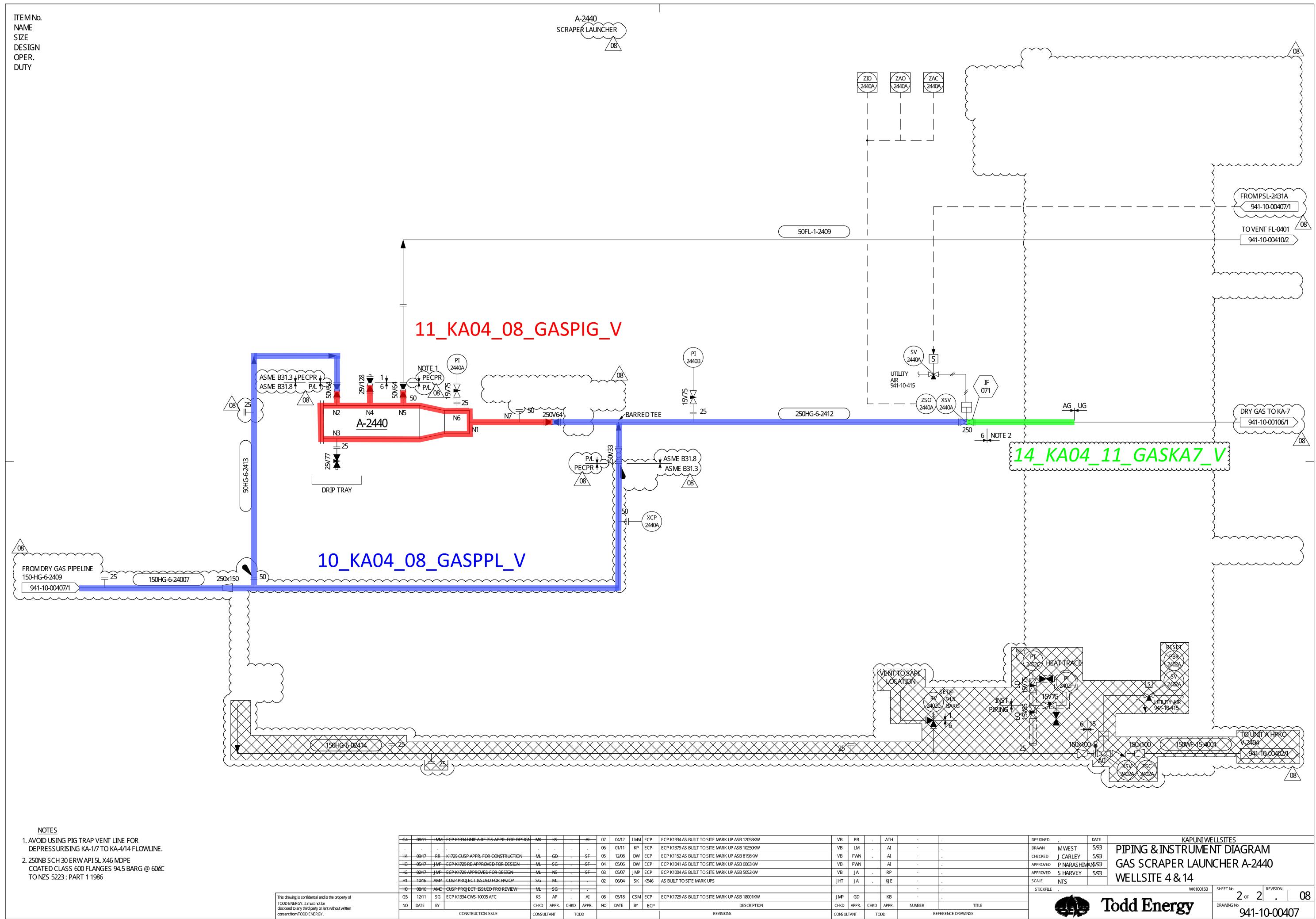

	METHANC	<u>L INJ EC</u>	TION TO	KA-2 WELLHEAD	- 941-10-0020	1/1
	d6 SS TUBING d6 SS TUBING d6 SS TUBING		LOW M2 M1 M4	A SKID METHANOL PRESSURE SYSTI V-0202A DUMP LG-0202A LSH-0202A ETHANOL INJ ECTI RE SYSTEM	EM 202/2 202/2 202/2 202/2	
10/77	đ 10 SS TUBING	МБ МБ	DISCON V-02024	A OFFGAS INECTED & PLUGO A CHOKE INLET B CHOKE INLET	GED 202/2 202/2	
		INS	5T. GAS 1	O ATMOSPHERE	- 941-10-0021	0/2
	APPROVED	etha Ells	ANOL SITE 2	W0310033110		Л Revision 14 0-00210



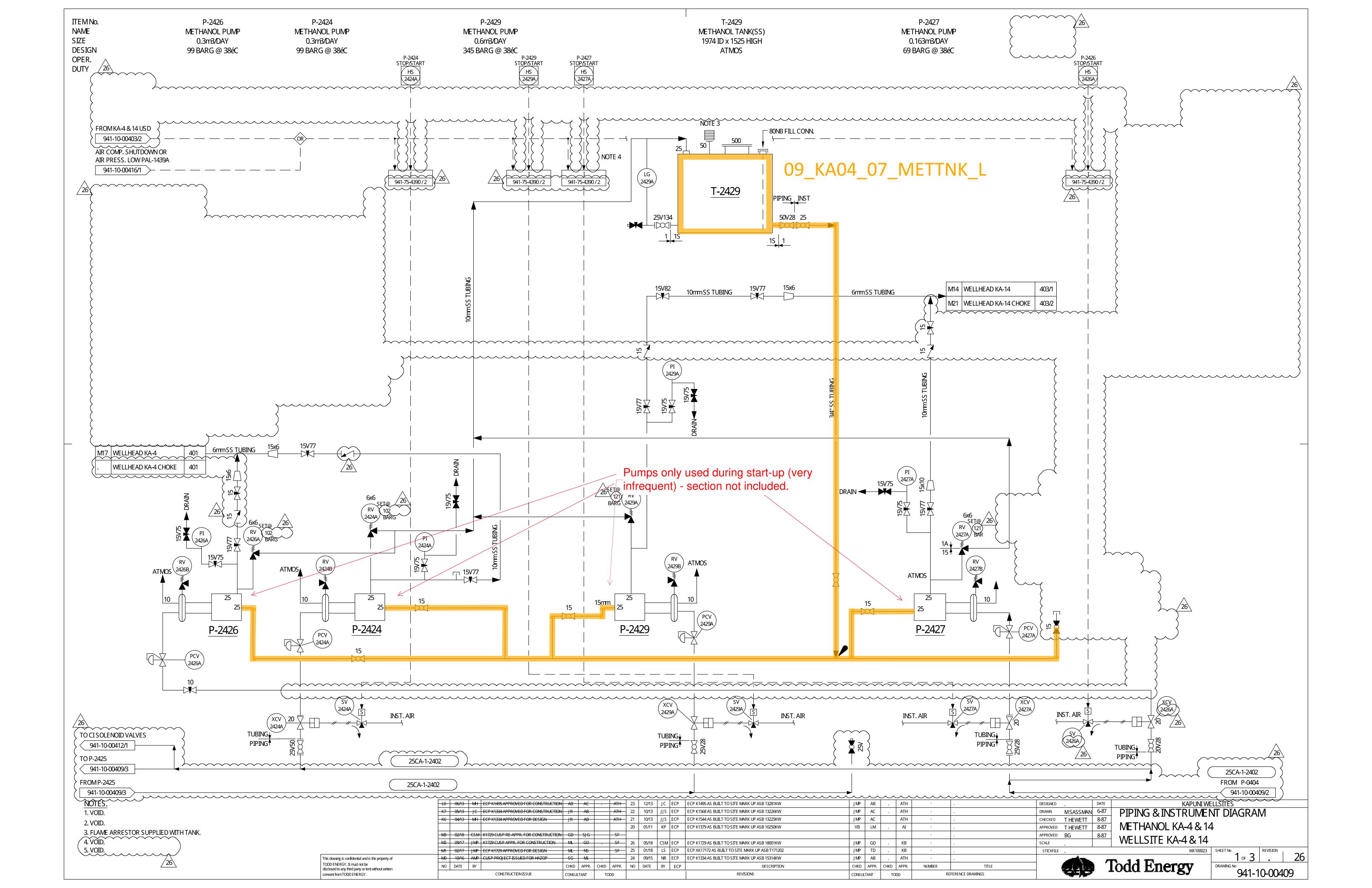
Appendix 3. P&ID Sectionalisation for KA-4 and KA-14



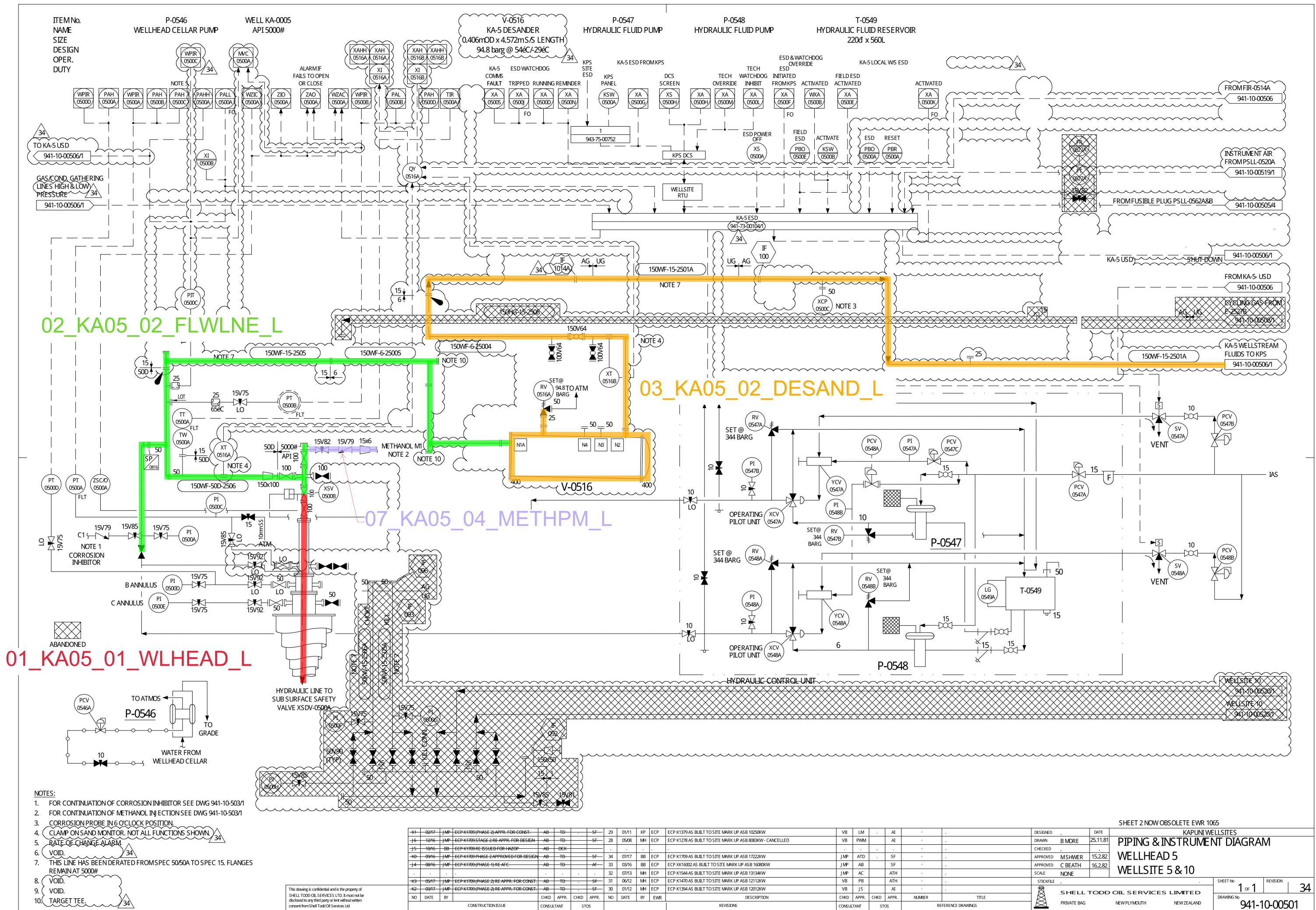
SP APPR. FOR CONSTRUCTION	ML	GD	•	_SF	26	05/18	CSM	ECP	ECP K1729 AS BUILT TO SITE MARK UP ASB 18001KW	JMP	GD		KB		
9 RE ISSUED AFC	ML	SG		SF	25	05/17	RR	ECP	ECP K1708 AS BUILT TO SITE MARK UP ASB 17177KW	JMP	TD		SF		
9 APPROVED FOR DESIGN	ML	NS		SF	24	03/16	BB	ECP	ECP KK16002 AS BUILT TO SITE MARK UP ASB 16095KW	JMP	AB		S		
DJECT ISSUED FOR HAZOP	SG	ML			23	11/15	BB	ECP	ECP K1630 AS BUILT TO SITE MARK UP ASB 15425KW	JMP	AB		ATH		
1 RE ISSUED AFC	AH	AC		ATH_	22	10/15	BB	ECP	ECP X0213 AS BUILT TO SITE MARK UP ASB 15422KW	JMP	AB		ATH		
4 RE ISSUED AFC	АКН	MK		ATH_	21	07/15	NR	ECP	ECP K1481 AS BUILT TO SITE MARK UP ASB 15159KW	JMP	AB	•	ATH		
	CHKD	APPR.	CHKD	APPR.	NO	DATE	BY	ECP	DESCRIPTION	CHKD	APPR.	CHKD	APPR.	NUMBER	ΤΠLE
NSTRUCTION ISSUE	CONSUL	TANT	то	DD			-		REVISIONS	CONSUL	TANT	TO	DD	RE	Ference Drawings

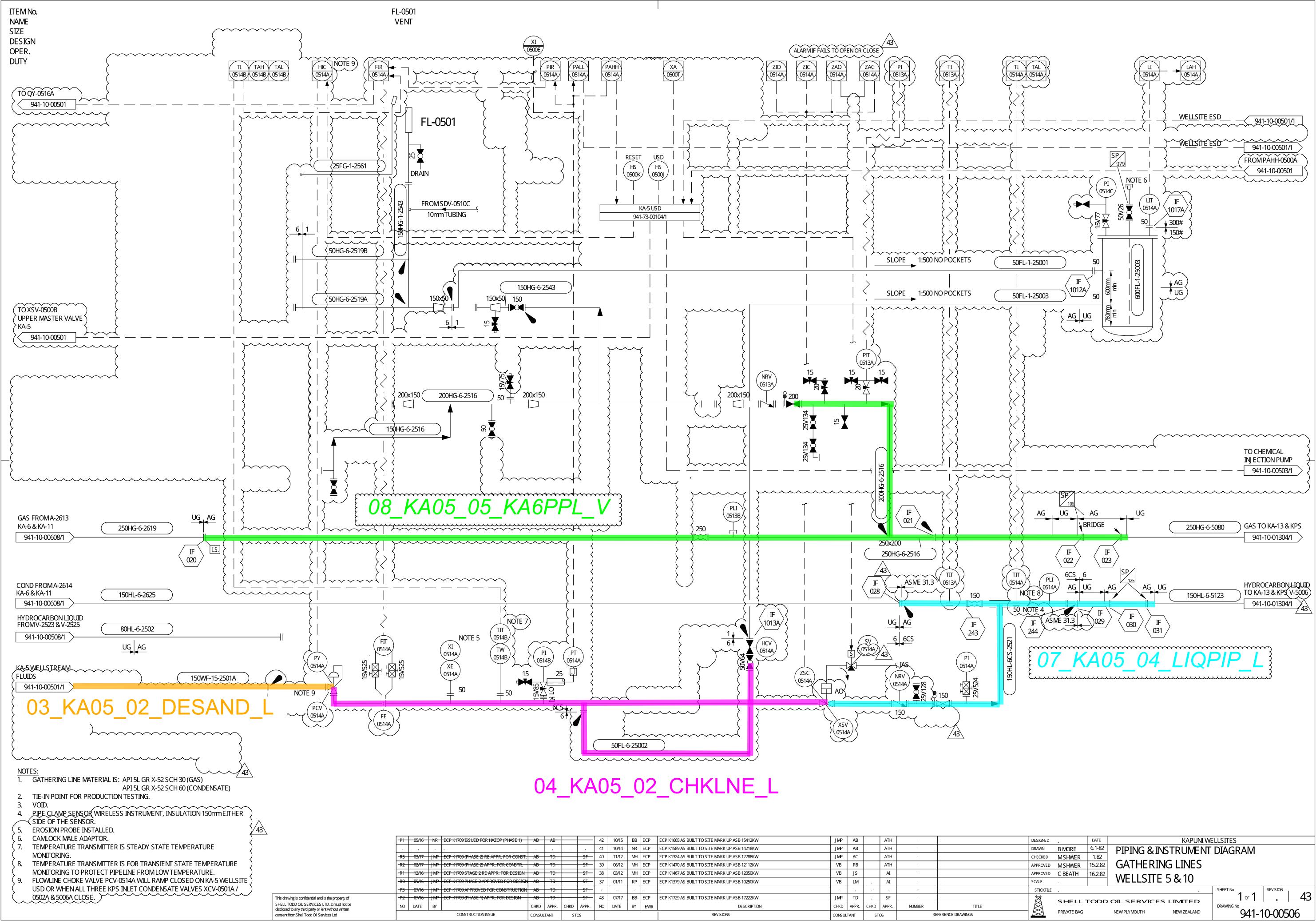


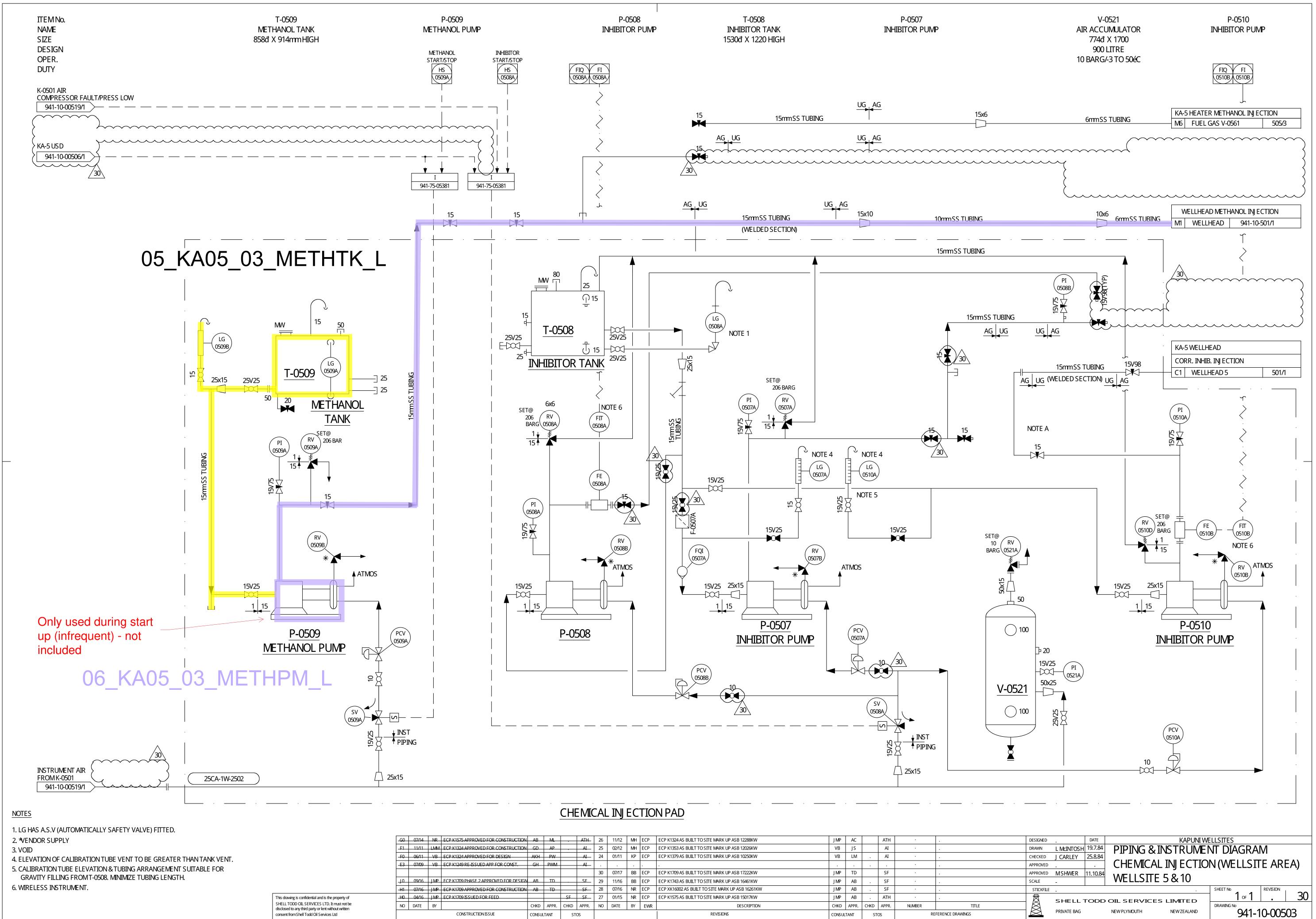
onsent from TODD ENERGY.


			•		•					•	•				
PAPPR. FOR CONSTRUCTION	ML	GD	· ·	SF	• •						•				
RE APPROVED FOR DESIGN	ML	SG	•	SF	• •					•	•				
APPROVED FOR DESIGN	ML	NS	•	SF	05	08/19	SH	ECP	ECP XK18002 AS BUILT TO SITE MARK UP ASB T19011KK	JMP	SG		MW		
FCT ISSUED FOR HAZOP	SG	ML	•	•	04	05/18	CSM	ECP	ECP K1729 AS BUILT TO SITE MARK UP ASB 18001KW	JMP	GD		KB		
J ,. ISSUED FOR REVIEW	ML	SG	· ·	,	03	05/17	RR	ECP	ECP K1708 AS BUILT TO SITE MARK UP ASB 17177KW	JMP	TD		SF		
REMEDIATION AFC					02	09/15	NR	ECP	ECP K1334 AS BUILT TO SITE MARK UP ASB 15314KW	JMP	AB		ATH		
EDIATION FOR HAZOP	ML	AB			01	03/14	MH	ECP	ECP K1334 AS BUILT TO SITE MARK UP ASB 14036KW	JMP	AB		ATH		
	CHKD	APPR.	CHKD	APPR.	NO	DATE	BY	ECP	DESCRIPTION	CHKD	APPR.	CHKD	APPR.	NUMBER	TΠLE
STRUCTION ISSUE	CONSU	LTANT	тс)DD					REVISIONS	CONSUL	TANT	TO	DD	REI	FERENCE DRAWINGS

	•				23	05/18	CSM	ECP	ECP K1729 AS BUILT TO SITE MARK UP ASB 18001KW	JMP	GD		KB	•	•
PAPPR. FOR CONSTRUCTION	ML	GD	•	SF	22	06/17	AMP	ECP	ECP XK17172 AS BUILT TO SITE MARK UP ASB 17181KK	JMP	TD	•	SF	•	•
RE APPROVED FOR DESIGN	ML	SG		SF	21	08/13	NR	ECP	ECPs K1334-05 & K1334 AS BUILT TO SITE MARK UP ASBs 13184KW & 14036KW	JMP	AC	•	ATH	•	•
APPROVED FOR DESIGN	ML	NS		SF	20	10/12	JC	ECP	ECP K1470 & K1324 AS BUILT TO SITE MARK UP ASB 12213KW & 12288KW	DBM	AC		ATH	•	•
ECT ISSUED FOR HAZOP	SG	ML			19	03/12	LMM	ECP	ECP K1334 AS BUILT TO SITE MARK UP ASB 12058KW	VB	РВ	•	ATH	•	•
-05 APPROVED FOR CONST.	АКН	ML	•	ATH	18	01/11	КР	ECP	ECP K1379 AS BUILT TO SITE MARK UP ASB 10250KW	VB	LM	•	AI	•	
05 ISSUED FOR HAZOP	АКН	ML	•	· ·										•	•
APPROVED FOR DESIGN	Dj	AP	•	AI	24	11/19	CL	ECP	ECP XK18002 AS BUILT TO SITE MARK UP ASB T19007KK	JMP	SG		MW		•
	CHKD	APPR.	CHKD	APPR.	NO	DATE	BY	ECP	DESCRIPTION	CHKD	APPR.	CHKD	APPR.	NUMBER	TITLE
ISTRUCTION ISSUE	CONSU	ILTANT	то	DD					REVISIONS	CONSU	TANT	то	DD	RE	FERENCE DRAWINGS

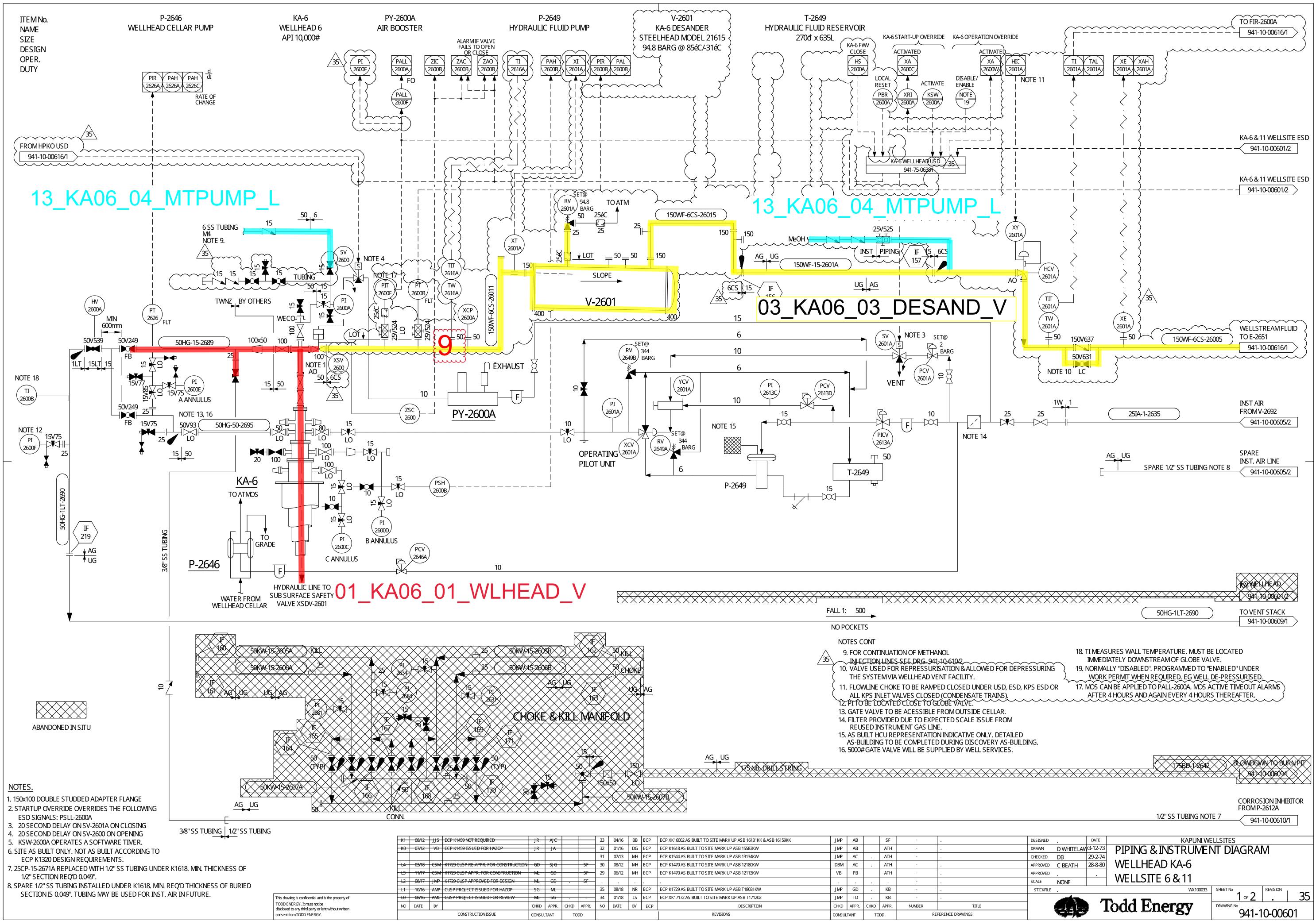

STRUCTION ISSUE	CONSUL								REVISIONS	CONSUL		TO	-		FERENCE DRAWINGS
	CHKD	APPR.	CHKD	APPR.	NO	DATE	BY	ECP	DESCRIPTION	CHKD	APPR.	CHKD	APPR.	NUMBER	TITLE
CWS-10005 AFC	KS	AP		AI	08	05/18	CSM	ECP	ECP K1729 AS BUILT TO SITE MARK UP ASB 18001KW	JMP	GD		KB	•	
JECT ISSUED FRO REVIEW	ML	SG	•		-									•	•
JECT ISSUED FOR HAZOP	SG	ML	•	· ·	02	06/04	SK	K546	AS BUILT TO SITE MARK UPS	JΗT	JA		KJ E	•	
APPROVED FOR DESIGN	ML	NS	•	SF	03	05/07	JMP	ECP	ECP K1004 AS BUILT TO SITE MARK UP ASB 5052KW	VB	JA		RP	•	•
RE APPROVED FOR DESIGN	ML	SG	•	SF	04	05/06	DW	ECP	ECP K1041 AS BUILT TO SITE MARK UP ASB 6063KW	VB	PWN		AI	•	•
P APPR. FOR CONSTRUCTION	ML	GD	•	SF	05	12/08	DW	ECP	ECP K1152 AS BUILT TO SITE MARK UP ASB 8198KW	VB	PWN		AI	•	
					06	01/11	KP	ECP	ECP K1379 AS BUILT TO SITE MARK UP ASB 10250KW	VB	LM		AI	•	•
HUNIT A RE-ISS APPR. FOR DESIGN	MK	KS	•	AI	- 07	04/12	LMM	ECP	ECP K1334 AS BUILT TO SITE MARK UP ASB 12058KW	VB	PB		ATH	•	•



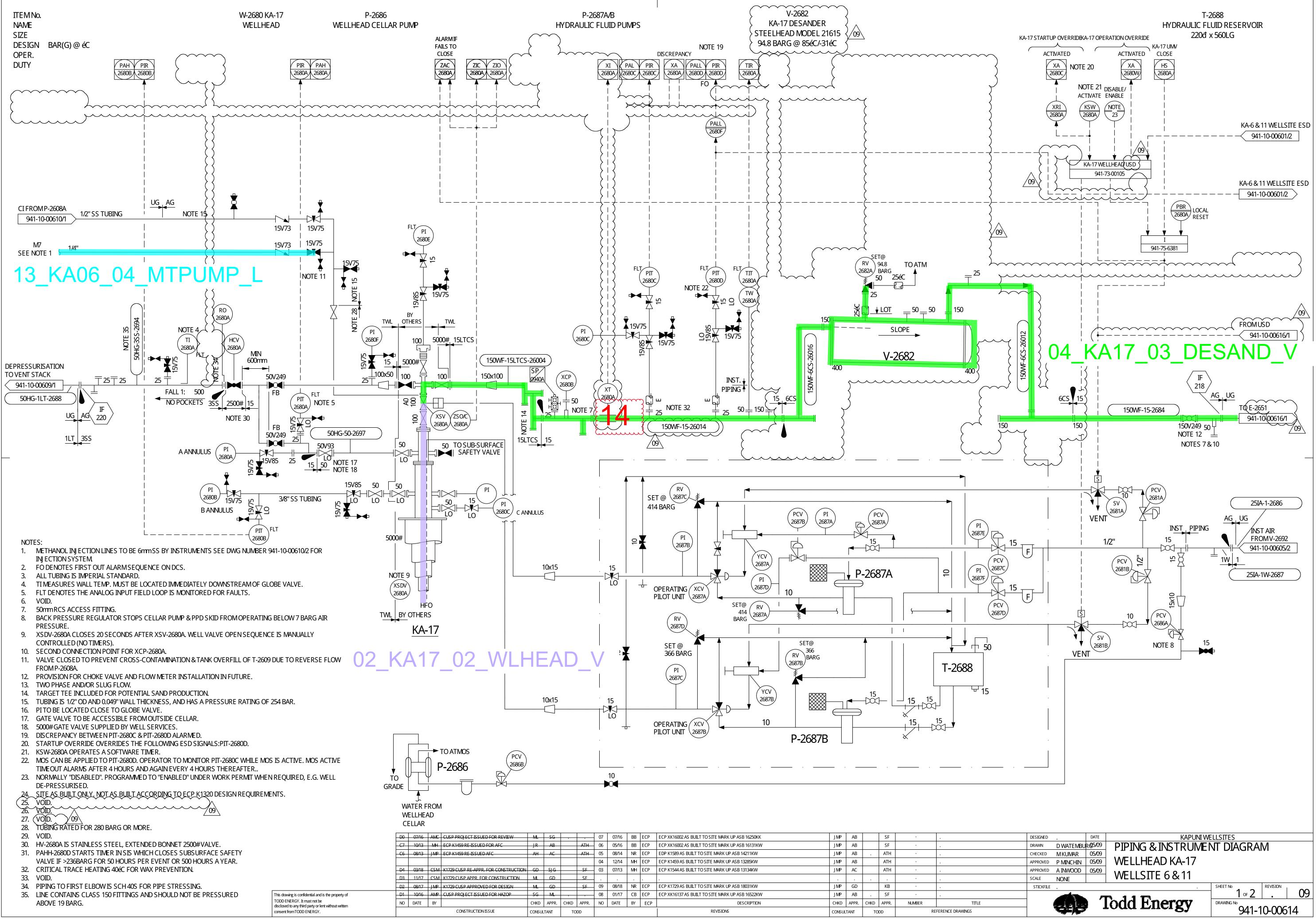

Appendix 4. P&ID Sectionalisation for KA-5 and KA-10

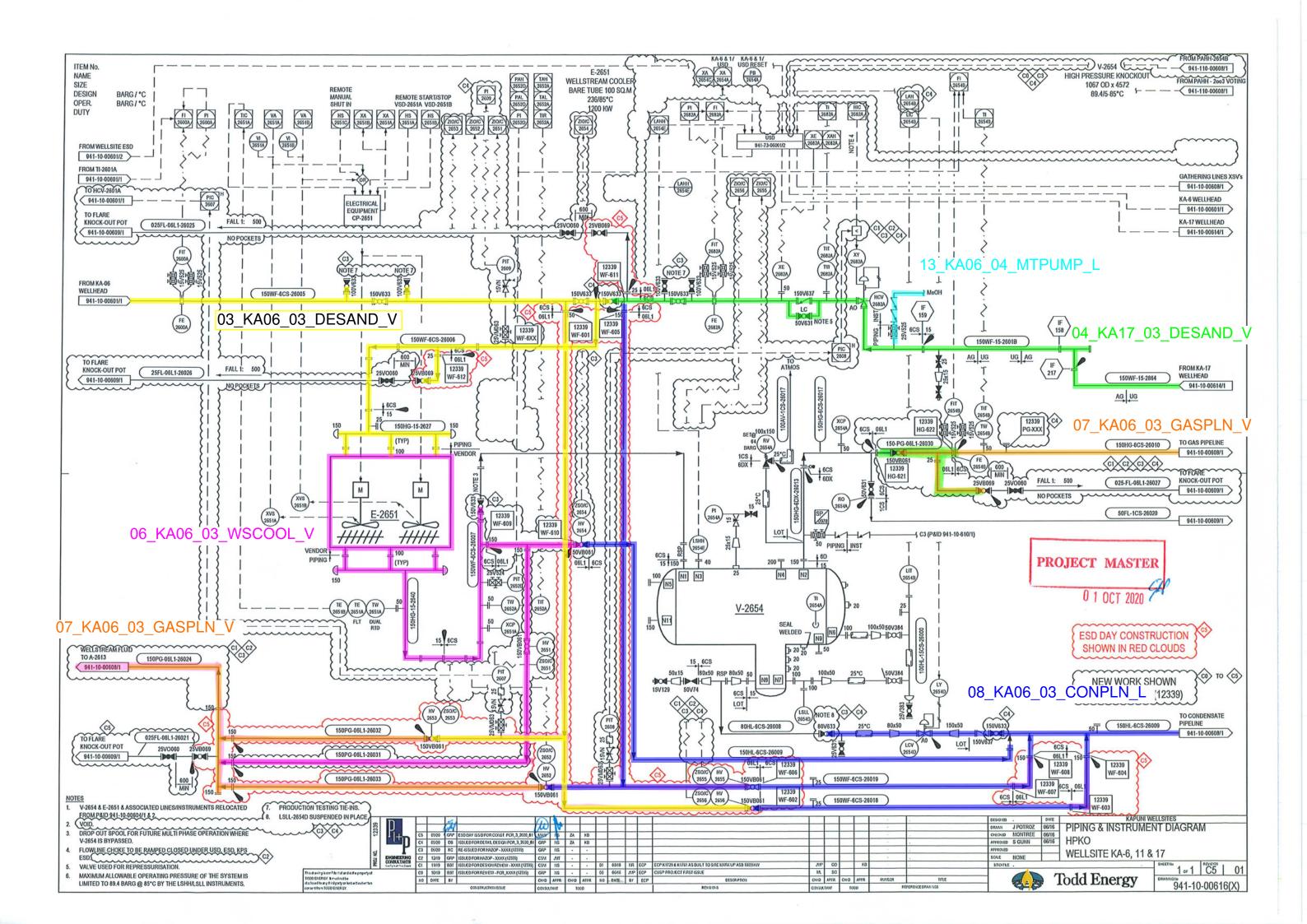
ICTION ISSUE	CONSUL	TANT	ST	OS					REVISIONS	CONSUL	TANT	STO	S	RE	FERENCE DRAWINGS
	CHKD	APPR.	CHKD	APPR.	NO	DATE	BY	EWR	DESCRIPTION	CHKD	APPR.	CHKD	APPR.	NUMBER	ΤΠLE
ASE 2) RE APPR. FOR CONST.	AB	TD	•	SF-	30	01/12	MH	ECP	ECP K1394 AS BUILT TO SITE MARK UP ASB 12012KW	VB	JS		AI	•	•
SE 2) RE APPR. FOR CONST.	AB	TD	•	SF-	31	06/12	MH	ECP	ECP K1470 AS BUILT TO SITE MARK UP ASB 12112KW	VB	PB		ATH	•	•
		•			32	07/13	MH	ECP	ECP K1544 AS BUILT TO SITE MARK UP ASB 13134KW	JMP	AC		ATH	•	
SE 1) RE AFC	AB	TD		AF	33	03/16	BB	ECP	ECP XK16002 AS BUILT TO SITE MARK UP ASB 16080KW	JMP	AB		SF	•	•
SE 2 APPROVED FOR DESIGN	AB	TD		SF-	34	07/17	BB	ECP	ECP K1709 AS BUILT TO SITE MARK UP ASB 17222KW	JMP	ATD	•	SF	•	•
SSUED FOR HAZOP	AB	ОСК								•		•		•	•
ge 2 re appr. For design-	AB	TD		SF-	28	05/08	MH	ECP	ECP K1278 AS BUILT TO SITE MARK UP ASB 8083KW - CANCELLED	VB	PWM		AI	•	•
			1												

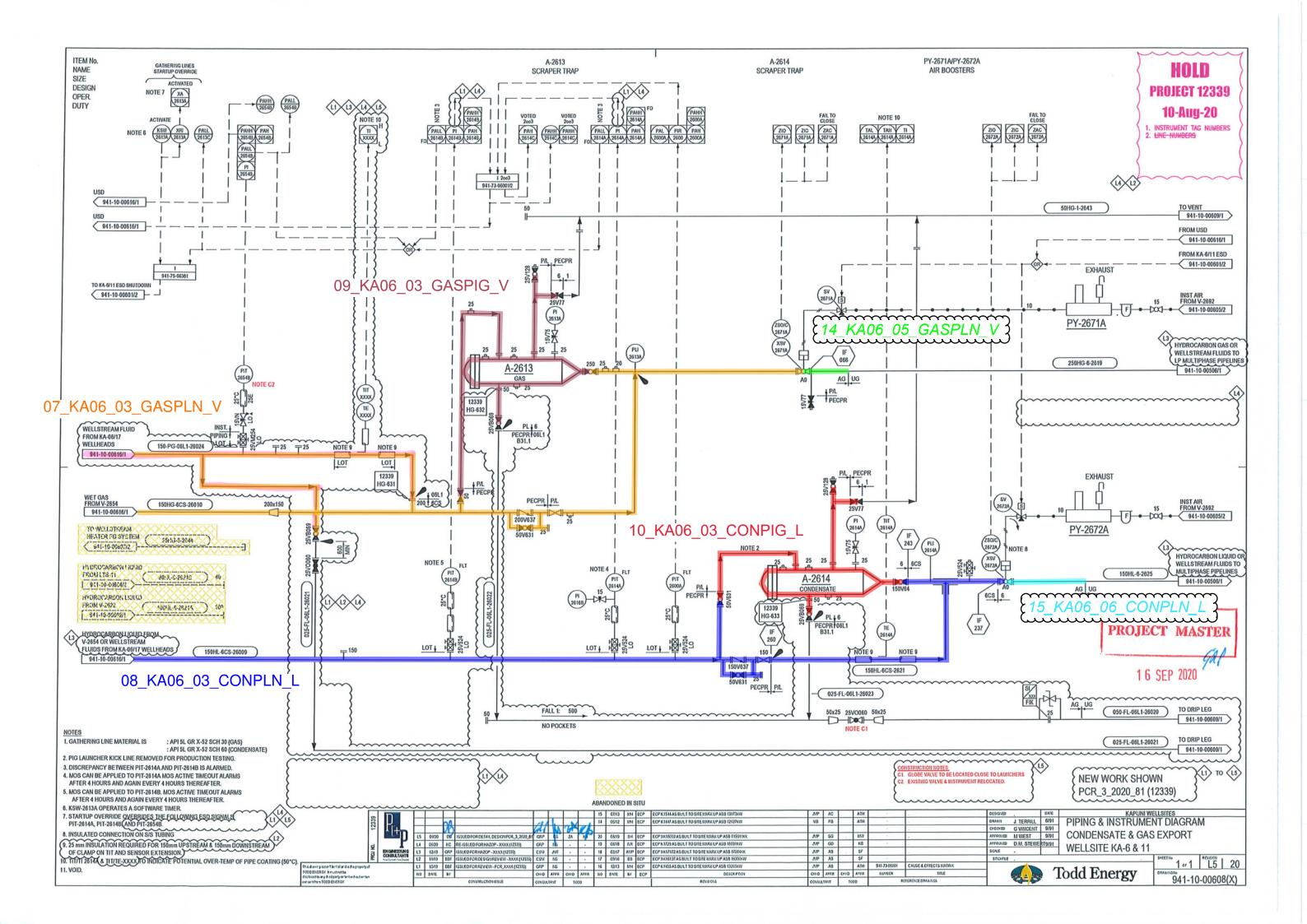
				_							-				
9 ISSUED FOR HAZOP (PHASE 1)	AB	AB			42	10/15	BB	ECP	ECP K1665 AS BUILT TO SITE MARK UP ASB 15412KW	JMP	AB		ATH		•
					41	10/14	NR	ECP	ECP K1589 AS BUILT TO SITE MARK UP ASB 14218KW	JMP	AB		ATH		
9 (PHASE 2) RE APPR. FOR CONST.	AB	TD		SF	40	11/12	MH	ECP	ECP K1324 AS BUILT TO SITE MARK UP ASB 12288KW	JMP	AC		ATH		
9 (PHASE 2) APPR. FOR CONSTR.	AB	TD		SF-	39	06/12	MH	ECP	ECP K1470 AS BUILT TO SITE MARK UP ASB 12112KW	VB	PB		ATH		
9 STAGE 2 RE APPR. FOR DESIGN	AB	TD		SF-	38	03/12	MH	ECP	ECP K1467 AS BUILT TO SITE MARK UP ASB 12050KW	VB	JS		AI		
9 PHASE 2 APPROVED FOR DESIGN	AB	TD		SF-	37	01/11	KP	ECP	ECP K1379 AS BUILT TO SITE MARK UP ASB 10250KW	VB	LM		AI		
9 APPROVED FOR CONSTRUCTION	AB	TD		SF	•	•					•				
9 (PHASE 1) APPR. FOR DESIGN	AB	TD	•	SF-	43	07/17	BB	ECP	ECP K1729 AS BUILT TO SITE MARK UP ASB 17222KW	JMP	TD		SF		
	CHKD	APPR.	CHKD	APPR.	NO	DATE	BY	EWR	DESCRIPTION	CHKD	APPR.	CHKD	APPR.	NUMBER	ΤΠLE
NSTRUCTION ISSUE	CONSUL	LTANT	ST	OS					REVISIONS	CONSUL	TANT	STO	SC	RE	FERENCE DRAWINGS

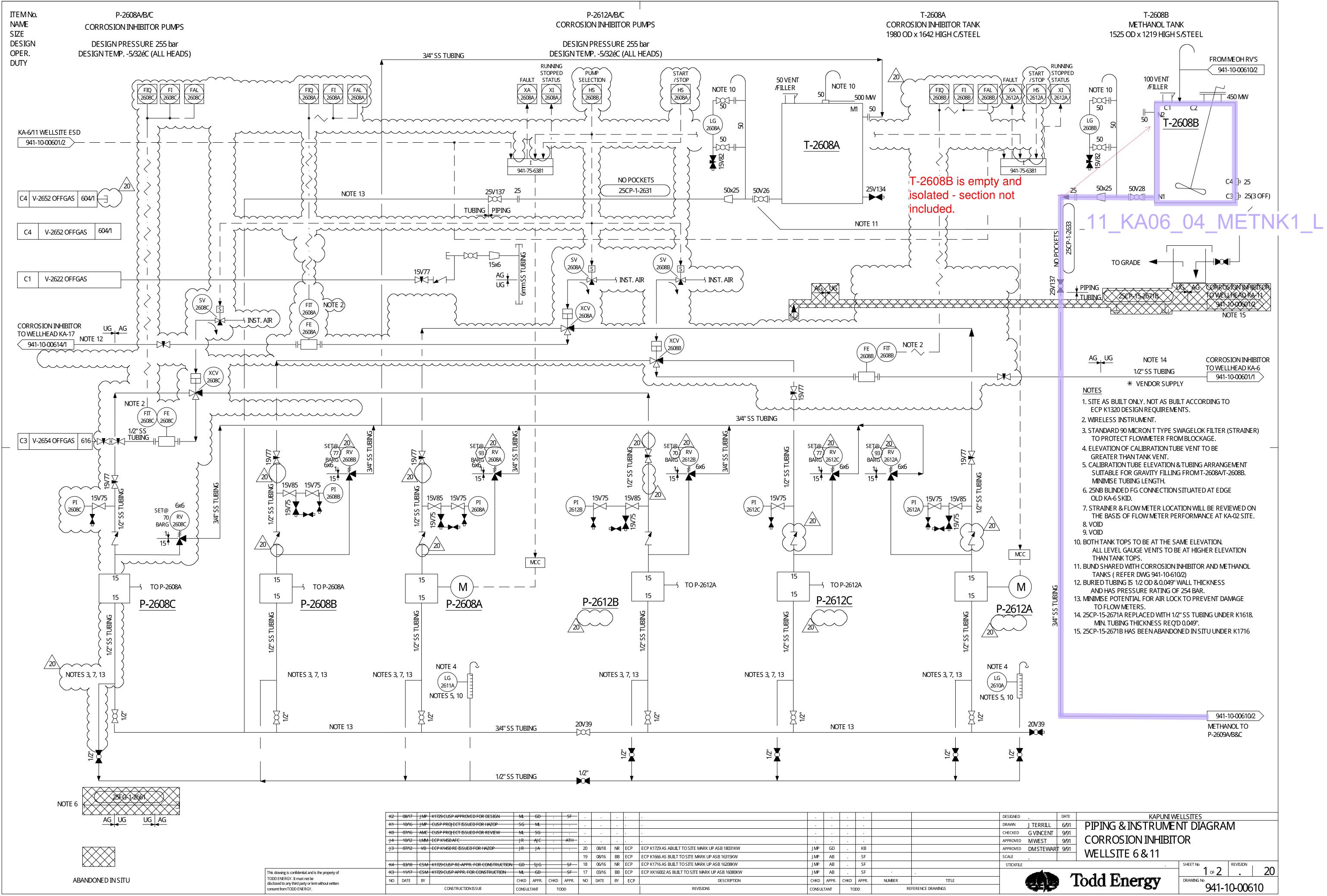


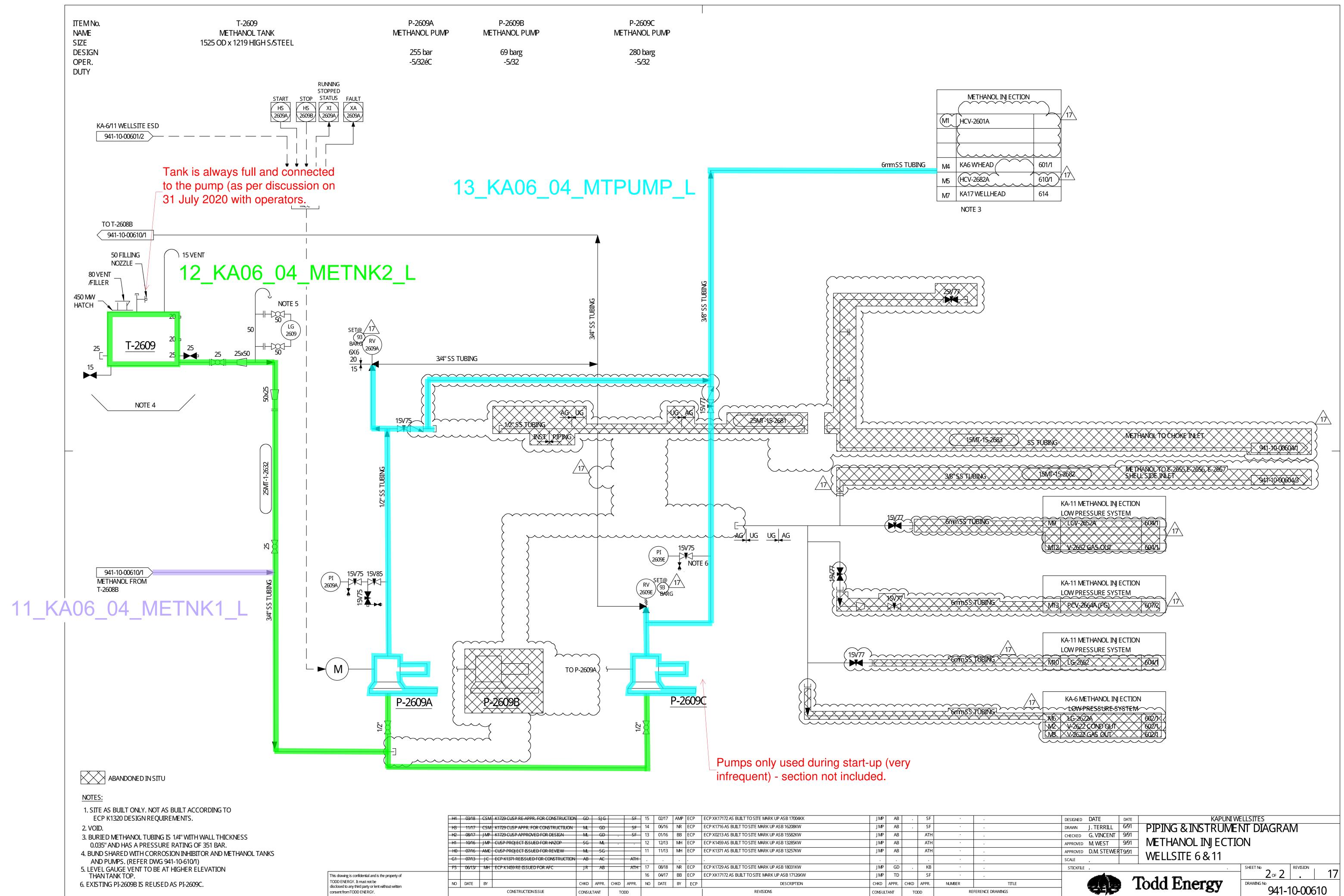
ROVED FOR CONSTRUCTION	AB	ML		ATH	26	11/12	MH	ECP	ECP K1324 AS BUILT TO SITE MARK UP ASB 12288KW	JMP	AC		ATH	•	
ROVED FOR CONSTRUCTION	GD	AP		_AI	25	02/12	MH	ECP	ECP K1353 AS BUILT TO SITE MARK UP ASB 12026KW	VB	JS		AI	•	
ROVED FOR DESIGN	AKH	PW		AI	24	01/11	KP	ECP	ECP K1379 AS BUILT TO SITE MARK UP ASB 10250KW	VB	LM		AI	•	
ISSUED APP FOR CONST.	GH	PWM		AI		•					•			•	
					30	07/17	BB	ECP	ECP K1709 AS BUILT TO SITE MARK UP ASB 17222KW	JMP	TD		SF	•	
SE 2 APPROVED FOR DESIGN	AB	TD		SF	29	11/16	BB	ECP	ECP K1743 AS BUILT TO SITE MARK UP ASB 16461KW	JMP	AB		SF	•	
ROVED FOR CONSTRUCTION	AB	TD		SF_	28	07/16	NR	ECP	ECP XK16002 AS BUILT TO SITE MARK UP ASB 16261KW	JMP	AB		SF	•	
JED FOR FEED			SF	SF	27	01/15	NR	ECP	ECP K1575 AS BUILT TO SITE MARK UP ASB 15017KW	JMP	AB		ATH	•	
	CHKD	APPR.	CHKD	APPR.	NO	DATE	BY	EWR	DESCRIPTION	CHKD	APPR.	CHKD	APPR.	NUMBER	TΠLE
JCTION ISSUE	CONSUL	TANT	ST	OS					REVISIONS	CONSUL	ΓΑΝΤ	STO	DS	RE	FERENCE DRAWINGS



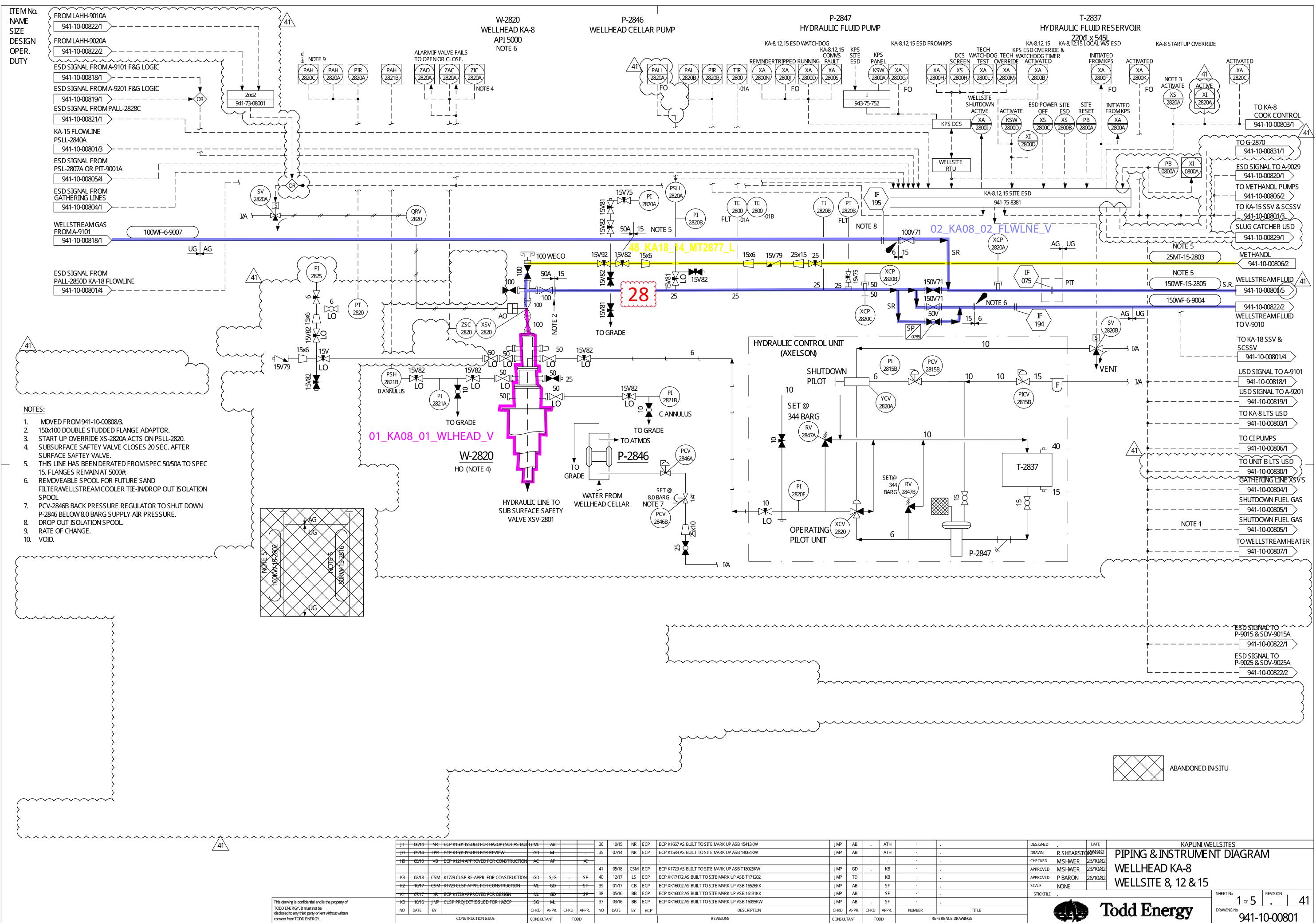

Appendix 5. P&ID Sectionalisation for KA-6 and KA-17



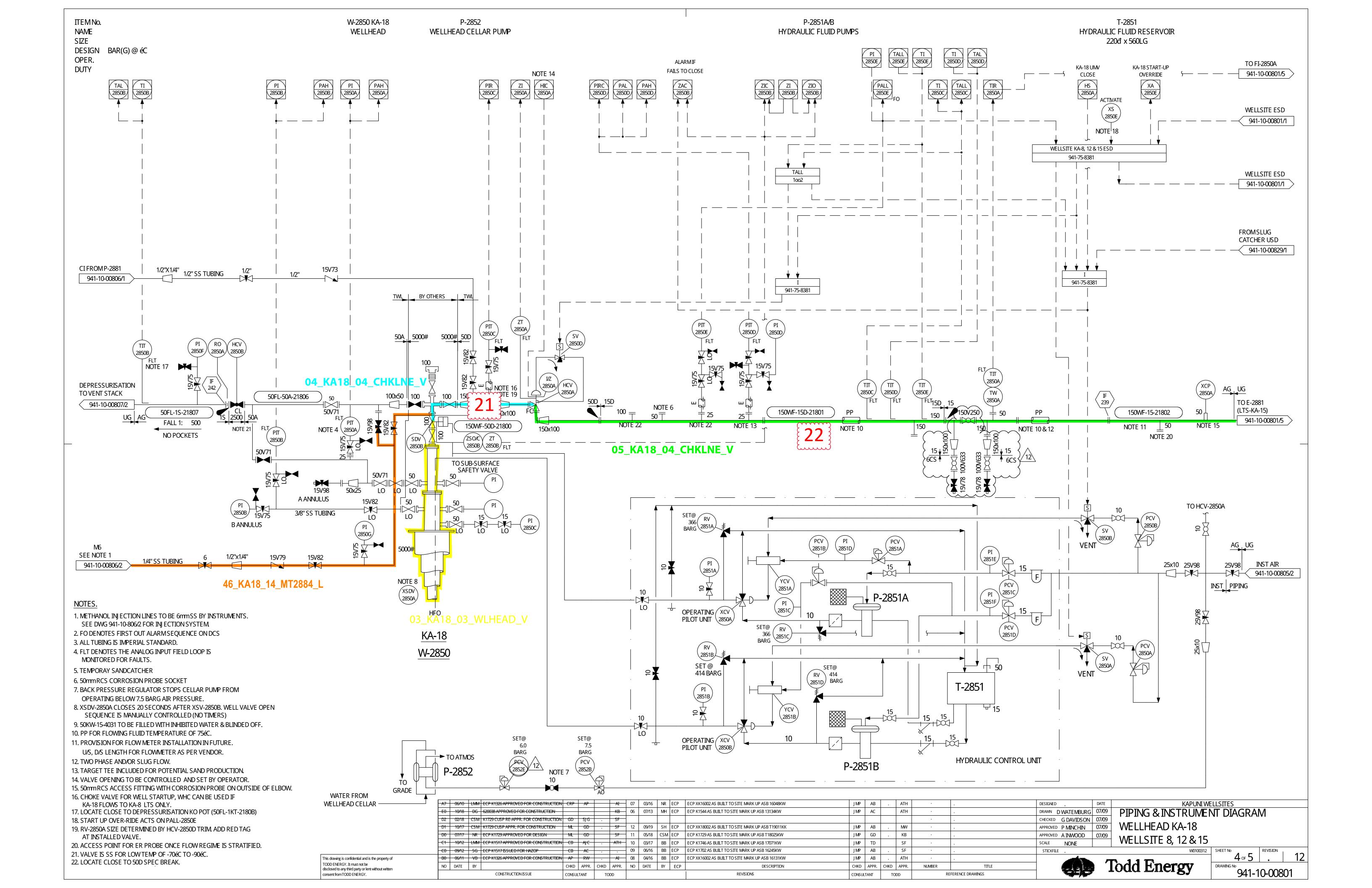

ISTRUCTION ISSUE	CONSULTANT		TODD						REVISIONS	CONSUL	TANT	TODD		REFERENCE DRAWINGS	
	CHKD	APPR.	CHKD	APPR.	NO	DATE	BY	ECP	DESCRIPTION	CHKD	APPR.	CHKD	APPR.	NUMBER	ΤITLE
JECT ISSUED FOR REVIEW	ML	SG	•	•	- 34	01/18	LS	ECP	ECP XK17172 AS BUILT TO SITE MARK UP ASB T171202	JMP	TD		KB	•	•
JECT ISSUED FOR HAZOP	SG	ML			35	08/18	NR	ECP	ECP K1729 AS BUILT TO SITE MARK UP ASB T18031KW	JMP	GD		КВ	•	•
P APPROVED FOR DESIGN	ML	GD	•	SF	•	•					•			•	•
P APPR. FOR CONSTRUCTION	ML	GD		SF	29	06/12	MH	ECP	ECP K1470 AS BUILT TO SITE MARK UP ASB 12113KW	VB	PB		ATH	•	•
P RE-APPR. FOR CONSTRUCTION	GD	SJG		SF	- 30	08/12	MH	ECP	ECP K1470 AS BUILT TO SITE MARK UP ASB 12180KW	DBM	AC		ATH	•	•
					31	07/13	MH	ECP	ECP K1544 AS BUILT TO SITE MARK UP ASB 13134KW	JMP	AC		ATH	•	•
ISSUED FOR HAZOP	JR	JA			32	01/16	DG	ECP	ECP K1618 AS BUILT TO SITE MARK UP ASB 15583KW	JMP	AB		ATH	•	•
NOT REQUIRED	JR	AJC			- 33	04/16	BB	ECP	ECP XK16002 AS BUILT TO SITE MARK UP ASB 16131KK & ASB 16159KK	JMP	AB		SF	•	•

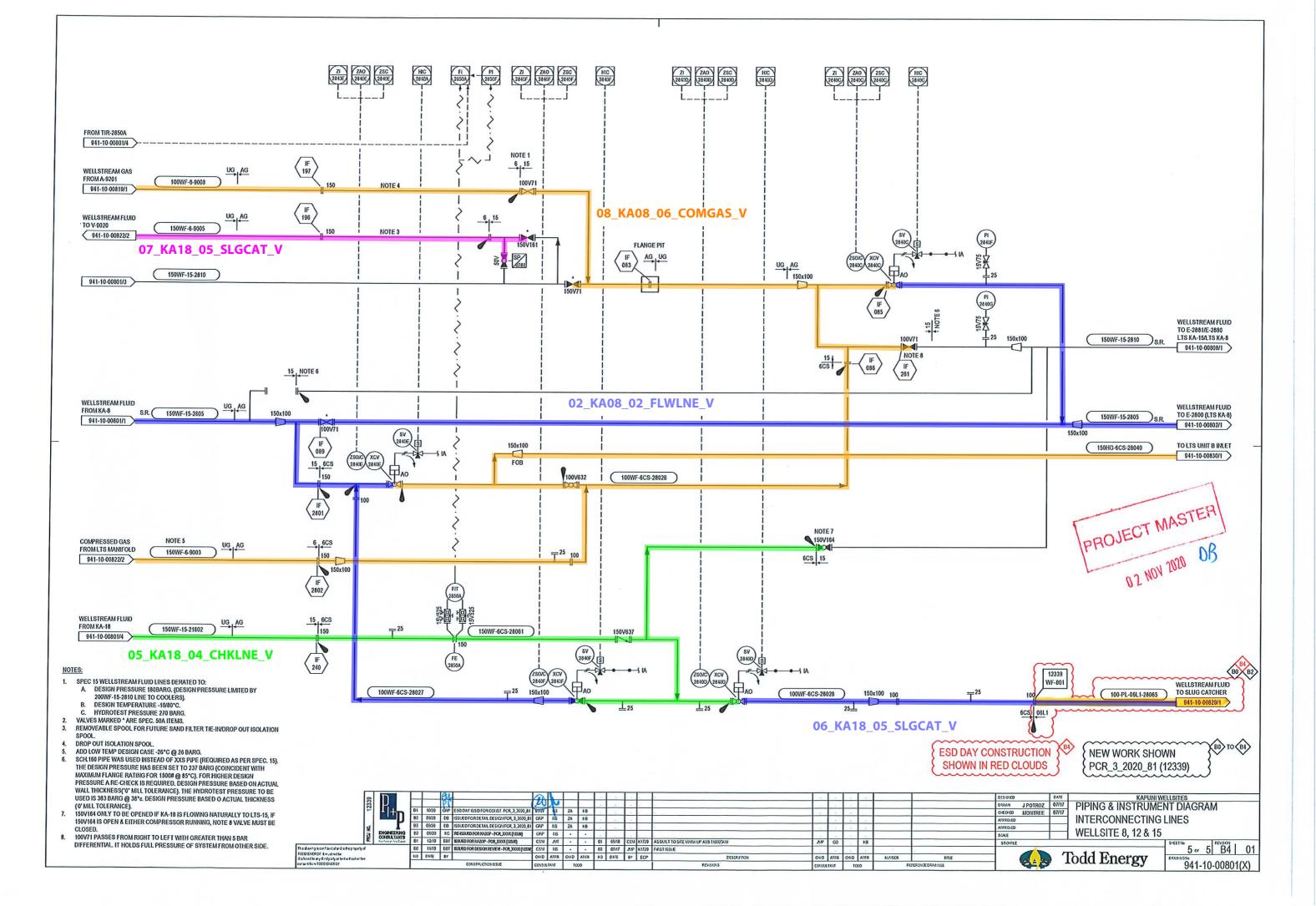

NSTRUCTION ISSUE	CONSULTANT		TODD						REVISIONS	CONSUL	CONSULTANT TO		DD	REFERENCE DRAWINGS	
	CHKD	APPR.	CHKD	APPR.	NO	DATE	BY	ECP	DESCRIPTION	CHKD	APPR.	CHKD	APPR.	NUMBER	TITLE
DJECT ISSUED FOR HAZOP	SG	ML			08	01/17	CB	ECP	ECP XK16137 AS BUILT TO SITE MARK UP ASB 16522KW	JMP	AB		SF	•	
SP APPROVED FOR DESIGN	ML	GD		SF	09	08/18	NR	ECP	ECP K1729 AS BUILT TO SITE MARK UP ASB 18031KW	JMP	GD		KB	•	
SP APPR. FOR CONSTRUCTION	ML	GD		SF		•						•		•	
SP RE-APPR. FOR CONSTRUCTION	GD	SJG		SF	03	07/13	MH	ECP	ECP K1544 AS BUILT TO SITE MARK UP ASB 13134KW	JMP	AC		ATH	•	
					04	12/14	MH	ECP	ECP K1459 AS BUILT TO SITE MARK UP ASB 13285KW	JMP	AB		ATH	•	
9 RE-ISSUED AFC	AH	AC		ATH	05	08/14	NR	ECP	EDP K1589 AS BUILT TO SITE MARK UP ASB 14211KW	JMP	AB		ATH	•	
9 RE-ISSUED FOR AFC	JR	AB		ATH	06	05/16	BB	ECP	ECP XK16002 AS BUILT TO SITE MARK UP ASB 16131KW	JMP	AB		SF	•	
DJECT ISSUED FOR REVIEW	ML-	SG	•	•	07	07/16	BB	ECP	ECP XK16002 AS BUILT TO SITE MARK UP ASB 16250KK	JMP	AB		SF	•	
										_					

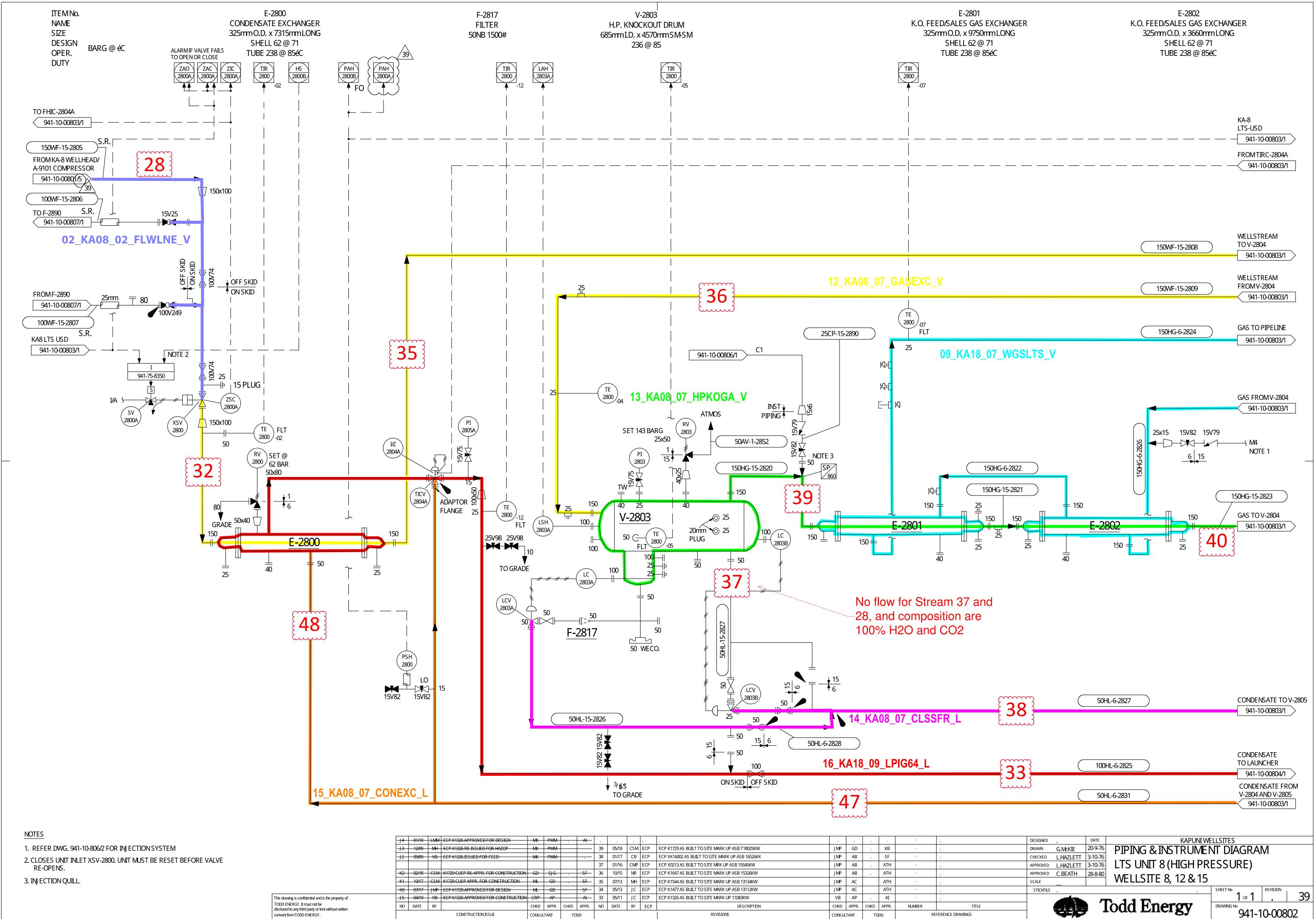
SP APPROVED FOR DESIGN	ML	GD	•	SF-											
DJECT ISSUED FOR HAZOP	SG	ML	•	· · ·											
DJECT ISSUED FOR REVIEW	ML	SG	•	· · ·							•	•			
DAFC	JR	AJC	•	ATH							•	•			
ORE ISSUED FOR HAZOP	JR	JA	•	· · ·	20	08/18	NR	ECP	ECP K1729 AS ABUILT TO SITE MARK UP ASB 18031KW	JMP	GD	•	KB		
					19	08/16	BB	ECP	ECP K1666 AS BUILT TO SITE MARK UP ASB 16315KW	JMP	AB		SF		
SP RE-APPR. FOR CONSTRUCTION	GD	SJG		SF	18	06/16	NR	ECP	ECP K1716 AS BUILT TO SITE MARK UP ASB 16208KW	JMP	AB	•	SF		
SP APPR. FOR CONSTRUCTION	ML	GD		SF-	17	03/16	BB	ECP	ECP XK16002 AS BUILT TO SITE MARK UP ASB 16080KW	JMP	AB		SF		•
	CHKD	APPR.	CHKD	APPR.	NO	DATE	BY	ECP	DESCRIPTION	CHKD	APPR.	CHKD	APPR.	NUMBER	TITLE
NSTRUCTION ISSUE	CONSUL	LTANT	тс	DD					REVISIONS	CONSUL	TANT	то	DD	REI	Ference Drawings

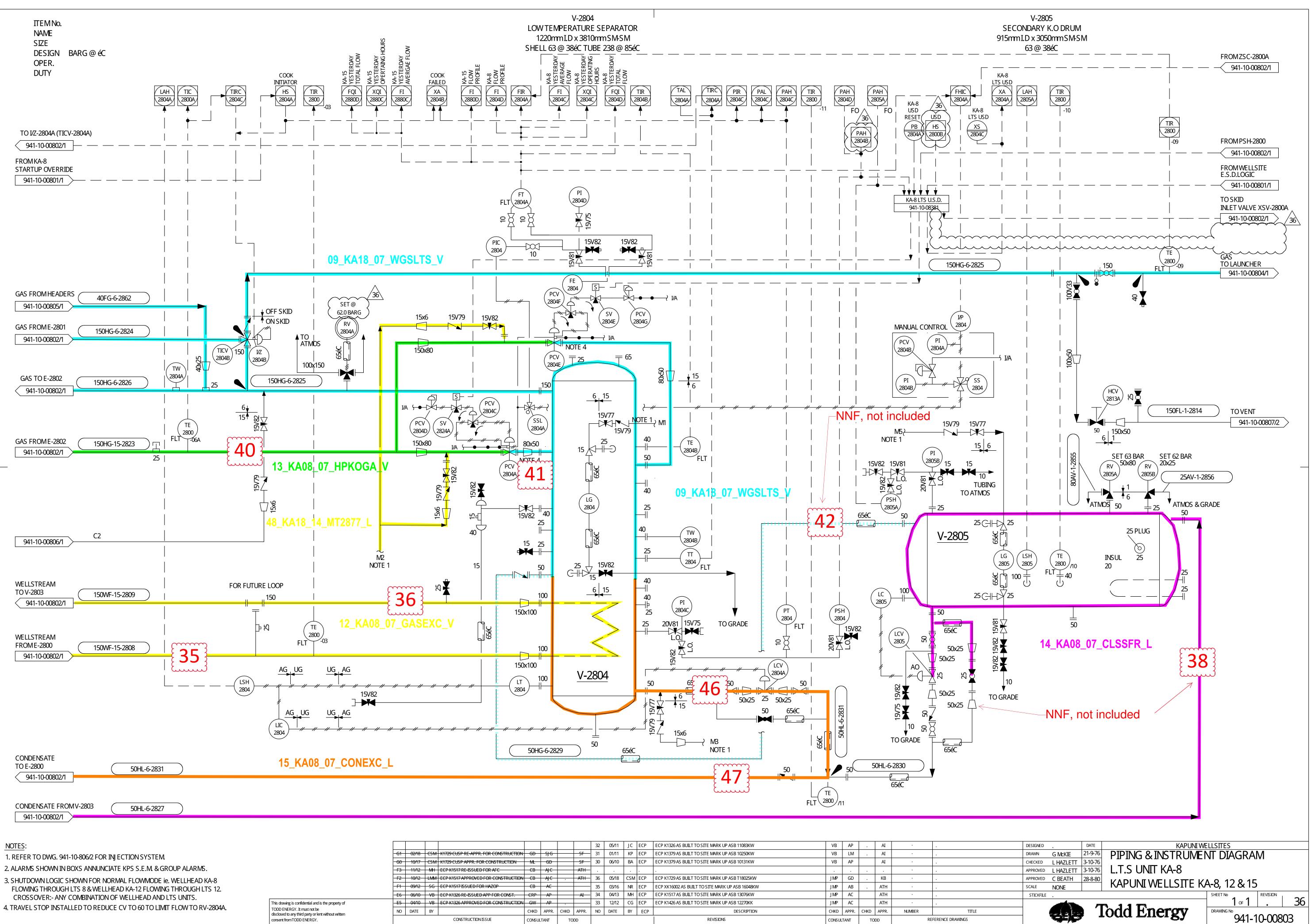


REVISIONS REFERENCE DRAWINGS CONSULTANT TODD CONSULTANT TODD

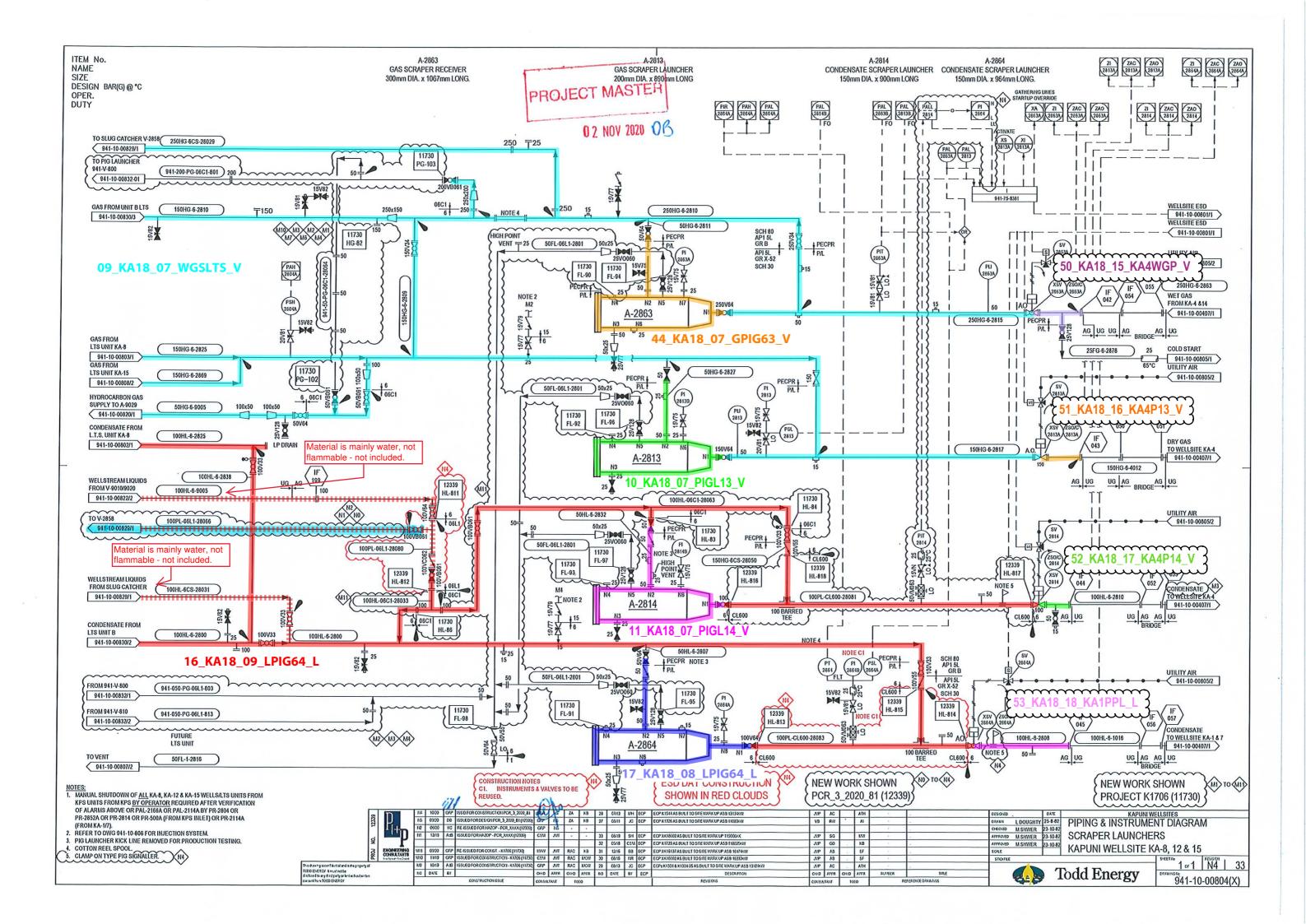


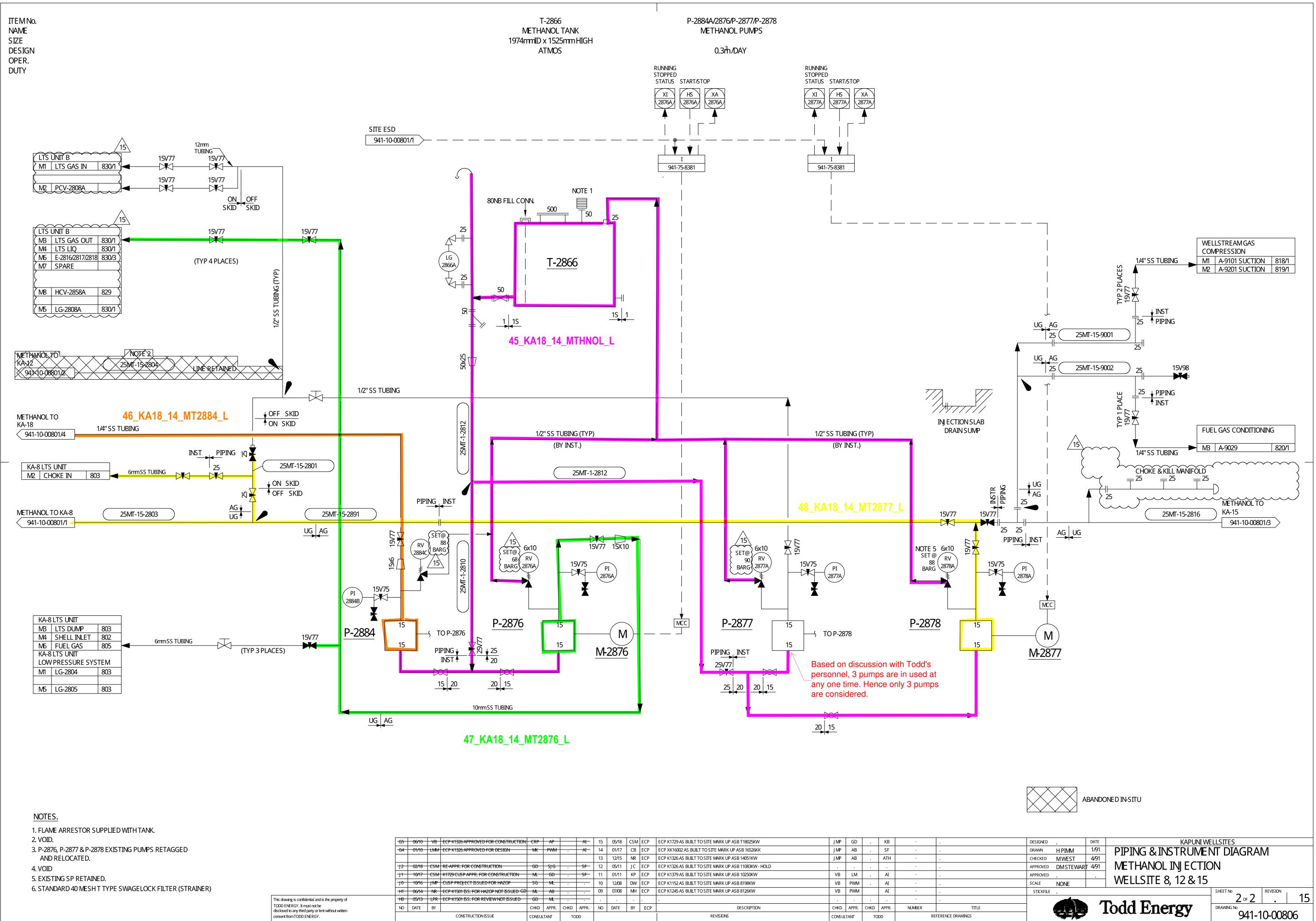


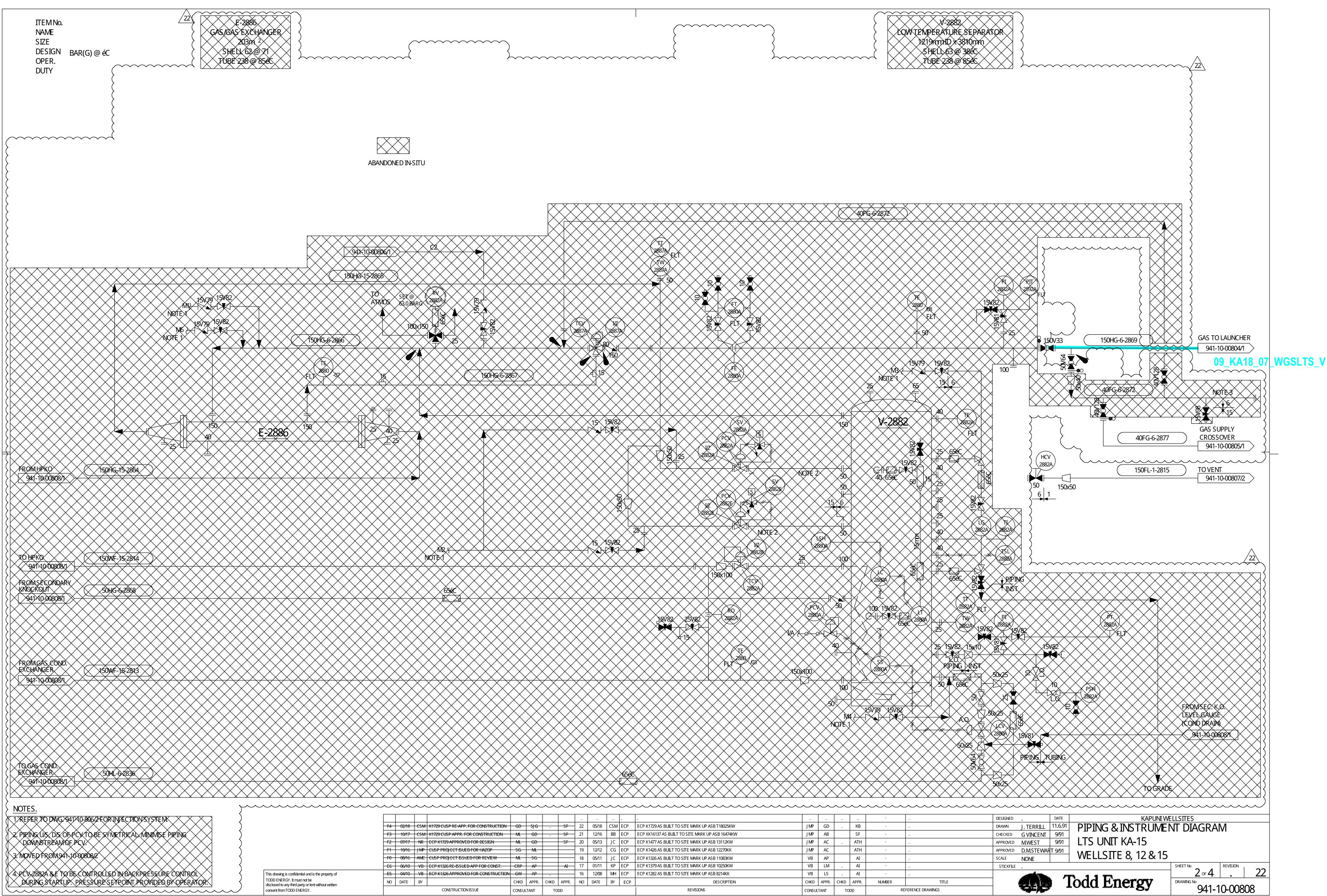

Appendix 6. P&ID Sectionalisation for KA-8 and KA-18



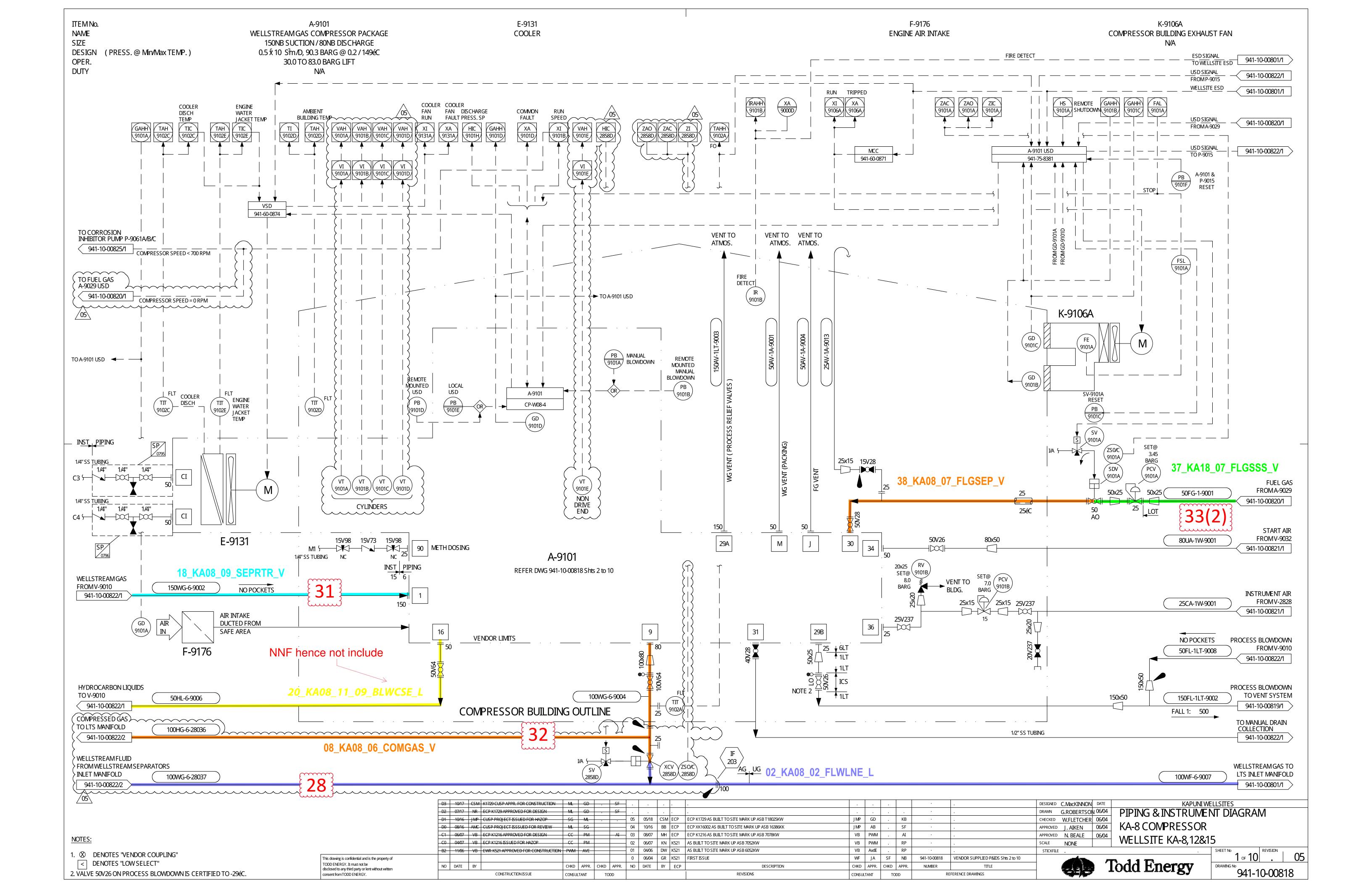
			-			-									
ISSUED FOR HAZOP (NOT AS BUIL	.T) ML	AB			36	10/15	NR	ECP	ECP K1667 AS BUILT TO SITE MARK UP ASB 15413KW	JMP	AB		ATH		
ISSUED FOR REVIEW	GD	ML		•	35	07/14	NR	ECP	ECP K1589 AS BUILT TO SITE MARK UP ASB 14064KW	JMP	AB		ATH		
APPROVED FOR CONSTRUCTION	AC	AP		AI	•	•									
					41	05/18	CSM	ECP	ECP K1729 AS BUILT TO SITE MARK UP ASB T18025KW	JMP	GD		KB		
PRE-APPR. FOR CONSTRUCTION	GD	SJG		SF	40	12/17	LS	ECP	ECP XK17172 AS BUILT TO SITE MARK UP ASB T171202	JMP	TD		KB		
PAPPR. FOR CONSTRUCTION	ML	GD	•	SF	39	01/17	СВ	ECP	ECP XK16002 AS BUILT TO SITE MARK UP ASB 16526KK	JMP	AB		SF	•	
APPROVED FOR DESIGN	ML	GD		SF	- 38	05/16	BB	ECP	ECP XK16002 AS BUILT TO SITE MARK UP ASB 16131KK	JMP	AB		SF		
ECT ISSUED FOR HAZOP	SG	ML			37	03/16	BB	ECP	ECP XK16002 AS BUILT TO SITE MARK UP ASB 16095KW	JMP	AB		SF		
	CHKD	APPR.	CHKD	APPR.	NO	DATE	BY	ECP	DESCRIPTION	CHKD	APPR.	CHKD	APPR.	NUMBER	TΠLE
STRUCTION ISSUE	CONSUL	TANT	то	DD					REVISIONS	CONSUL	TANT	TO	DD	REF	ERENCE DRAWINGS

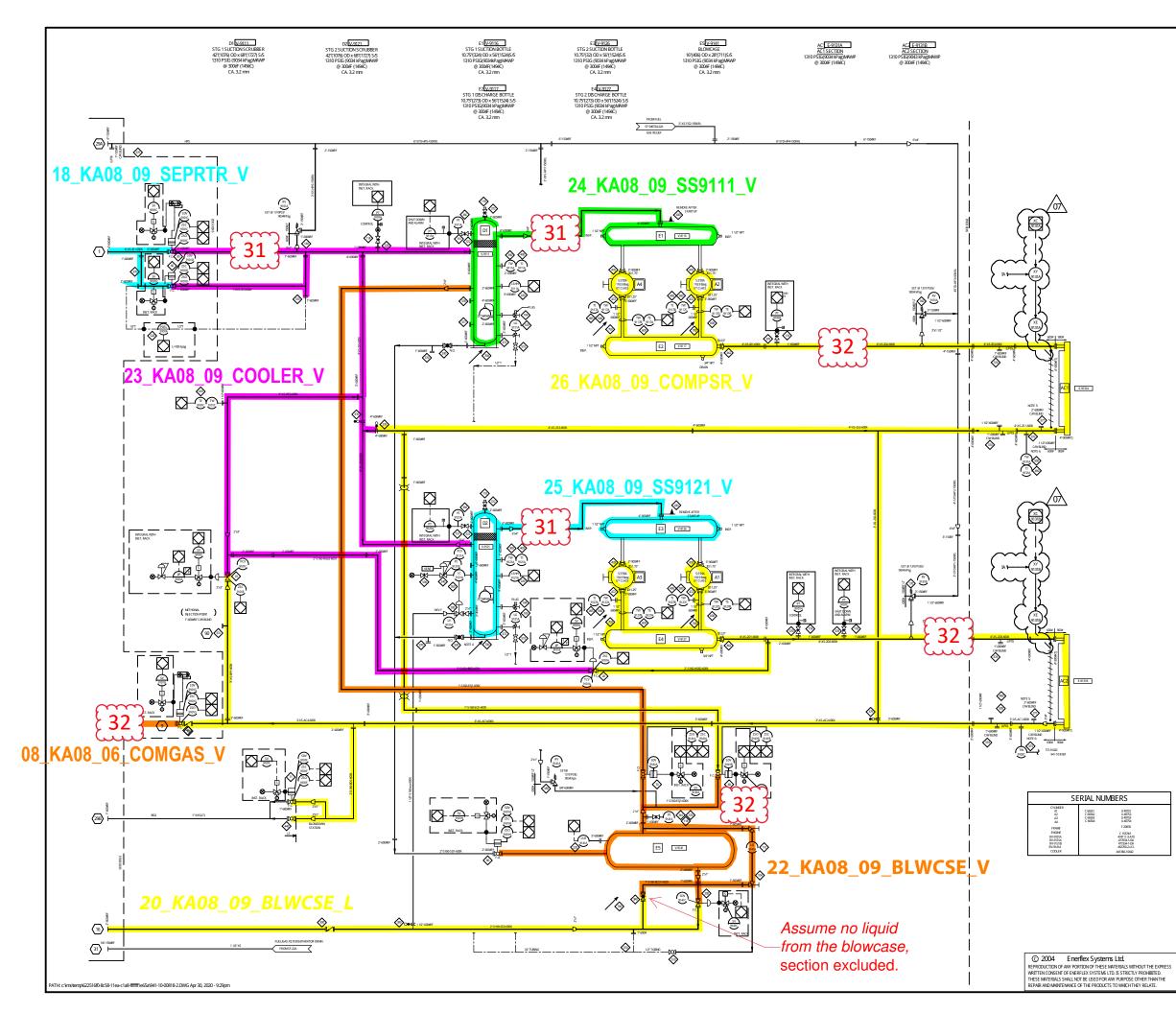






					32	05/11	JC	ECP	ECP K1326 AS BUILT TO SITE MARK UP ASB 11083KW	VB	AP		AI	•	•
PRE-APPR. FOR CONSTRUCTION	GĐ	SJ G		SF	31	01/11	KP	ECP	ECP K1379 AS BUILT TO SITE MARK UP ASB 10250KW	VB	LM	•	AI	•	•
P APPR. FOR CONSTRUCTION	ML	GD		SF	30	06/10	BA	ECP	ECP K1379 AS BUILT TO SITE MARK UP ASB 10131KW	VB	AP		AI	•	•
RE-ISSUED FOR AFC	СВ	AJC		ATH	•	•						•		•	•
APPROVED FOR CONSTRUCTION	СВ	AJC	•	ATH	36	05/18	CSM	ECP	ECP K1729 AS BUILT TO SITE MARK UP ASB T18025KW	JMP	GD	•	KB	•	•
ISSUED FOR HAZOP	СВ	AC			35	03/16	NR	ECP	ECP XK16002 AS BUILT TO SITE MARK UP ASB 16048KW	JM₽	AB		ATH	•	
RE-ISSUED APP FOR CONST.	CRP	AP		AI	34	04/13	MH	ECP	ECP K1517 AS BUILT TO SITE MARK UP ASB 13076KW	JMP	AC		ATH	•	•
APPROVED FOR CONSTRUCTION	GW	AP	•		33	12/12	CG	ECP	ECP K1426 AS BUILT TO SITE MARK UP ASB 12270KK	JMP	AC		ATH	•	•
	CHKD	APPR.	CHKD	APPR.	NO	DATE	BY	ECP	DESCRIPTION	CHKD	APPR.	CHKD	APPR.	NUMBER	TITLE
ISTRUCTION ISSUE	CONSUL	TANT	TO	DD					REVISIONS	CONSUL	TANT	TO	DD	RE	Ference Drawings





6 APPROVED FOR CONSTRUCTION	CRP	AP		AI	15	05/18	CSM	ECP	ECP K1729 AS BUILT TO SITE MARK UP ASB T18025KW	JMP	GD		KB		
6 APPROVED FOR DESIGN	MK	PWM	•	AI	14	01/17	СВ	ECP	ECP XK16002 AS BUILT TO SITE MARK UP ASB 16526KK	JMP	AB		SF	•	•
					13	12/15	NR	ECP	ECP K1326 AS BUILT TO SITE MARK UP ASB 14051KW	JMP	AB	•	ATH		•
. FOR CONSTRUCTION	GD	SJG	•	SF	12	05/11	JC	ECP	ECP K1326 AS BUILT TO SITE MARK UP ASB 11083KW - HOLD		•	•			•
SP APPR. FOR CONSTRUCTION	ML	GD	•	SF	11	01/11	KP	ECP	ECP K1379 AS BUILT TO SITE MARK UP ASB 10250KW	VB	LM	•	AI		•
OJ ECT ISSUED FOR HAZOP	SG	ML	•	· ·	10	12/08	DW	ECP	ECP K1152 AS BUILT TO SITE MARK UP ASB 8198KW	VB	PWM		AI		
11 ISS. FOR HAZOP NOT ISSUED GD	ML	AB	•	· ·	09	07/08	MH	ECP	ECP K1245 AS BUILT TO SITE MARK UP ASB 8126KW	VB	PWM		AI		•
HISS. FOR REVIEW NOT ISSUED	GD	ML	•	· ·		•					•				
	CHKD	APPR.	CHKD	APPR.	NO	DATE	BY	ECP	DESCRIPTION	CHKD	APPR.	CHKD	APPR.	NUMBE R	TITLE
INSTRUCTION ISSUE	CONSUL	TANT	то	DD					REVISIONS	CONSUL	TANT	TO	DD	REI	ERENCE DRAWINGS

_														
				•	•	•							•	•
GD	- SJ G	•	SF	22	05/18	CSM	ECP	ECP K1729 AS BUILT TO SITE MARK UP ASB T18025KW	JMP	GD		KB	•	•
ML	GD	•	SF	21	12/16	BB	ECP	ECP XK16137 AS BUILT TO SITE MARK UP ASB 16474KW	JMP	AB		SF	•	•
ML	GD		SF	20	05/13	JC	ECP	ECP K1477 AS BUILT TO SITE MARK UP ASB 13112KW	JMP	AC		ATH	•	•
SG	ML			19	12/12	CG	ECP	ECP K1426 AS BUILT TO SITE MARK UP ASB 12270KK	JMP	AC		ATH	•	•
ML	SG			18	05/11	JC	ECP	ECP K1326 AS BUILT TO SITE MARK UP ASB 11083KW	VB	AP		AI	•	
CRP	AP		AI	17	01/11	KP	ECP	ECP K1379 AS BUILT TO SITE MARK UP ASB 10250KW	VB	LM		AI	•	•
GW	AP	•		16	12/08	MH	ECP	ECP K1282 AS BUILT TO SITE MARK UP ASB 8214KK	VB	LS		AI	•	•
CHKD	APPR.	CHKD	APPR.	NO	DATE	BY	ECP	DESCRIPTION	CHKD	APPR.	CHKD	APPR.	NUMBER	TITLE
CONSUL	TANT	то	DD					REVISIONS	CONSUL	TANT	TOI	DD	RE	FERENCE DRAWINGS
	ML ML SG ML CRP GW CHKD	ML GD ML GD SG ML ML SG CRP AP GW AP	ML GD ML GD SG ML ML SG ML SG GW AP CHKD APPR.	ML GD . SF ML GD . SF SG ML . . ML SG . . ML SG . . ML SG . . CRP AP . . GW AP . . CHKD APPR. CHKD APPR.	ML GD . SF 21 ML GD . SF 20 SG ML 19 19 ML SG . 18 CRP AP AI 17 GW AP . 16 CHKD APPR. CHKD APPR. NO	ML GD . SF 21 12/16 ML GD . SF 20 05/13 SG ML . . 19 12/12 ML SG . . . 19 12/12 ML SG . . . 18 05/11 CRP AP . AI 17 01/11 GW AP . . 16 12/08 CHKD APPR. CHKD APPR. NO DATE	GD SJ G . SF 22 05/18 CSM ML GD . SF 21 12/16 BB ML GD . SF 20 05/13 JC SG ML GD . SF 20 05/13 JC SG ML . . 19 12/12 CG ML SG . . 18 05/11 JC CRP AP . AI 17 01/11 KP GW AP . . 16 12/08 MH CHKD APPR. CHKD APPR. NO DATE BY	GD SJG SF 22 05/18 CSM ECP ML GD SF 21 12/16 BB ECP ML GD SF 21 12/16 BB ECP ML GD SF 20 05/13 JC ECP SG ML SG 19 12/12 CG ECP ML SG SG 18 05/11 JC ECP GW AP AI 17 01/11 KP ECP GW AP CHKD APPR. NO DATE BY ECP	GD SJG SF 22 05/18 CSM ECP ECP K1729 AS BUILT TO SITE MARK UP ASB T18025KW ML GD SF 21 12/16 BB ECP ECP XK16137 AS BUILT TO SITE MARK UP ASB T18025KW ML GD SF 21 12/16 BB ECP ECP XK16137 AS BUILT TO SITE MARK UP ASB 16474KW ML GD SF 20 05/13 JC ECP ECP K1477 AS BUILT TO SITE MARK UP ASB 13112KW SG ML - 19 12/12 CG ECP ECP K1426 AS BUILT TO SITE MARK UP ASB 13112KW GR AB 05/11 JC ECP ECP K1426 AS BUILT TO SITE MARK UP ASB 11083KW GR AP - 18 05/11 JC ECP ECP K1326 AS BUILT TO SITE MARK UP ASB 11083KW GR AP - 16 12/08 MH ECP ECP K1329 AS BUILT TO SITE MARK UP ASB 8026KW GW AP - 16 12/08 MH ECP ECP K1282 AS BUILT TO SITE MARK UP ASB 8214KK CHKD	GD SJG SF 22 05/18 CSM ECP ECP K1729 AS BUILT TO SITE MARK UP ASB T18025KW JMP ML GD SF 21 12/16 BB ECP ECP XK16137 AS BUILT TO SITE MARK UP ASB T18025KW JMP ML GD SF 21 12/16 BB ECP ECP XK16137 AS BUILT TO SITE MARK UP ASB 16474KW JMP ML GD SF 20 05/13 JC ECP ECP K1477 AS BUILT TO SITE MARK UP ASB 13112KW JMP ML GD SF 20 05/13 JC ECP ECP K1426 AS BUILT TO SITE MARK UP ASB 13112KW JMP ML SG ML 19 12/12 CG ECP ECP K1426 AS BUILT TO SITE MARK UP ASB 1270KK JMP ML SG ML 18 05/11 JC ECP ECP K1326 AS BUILT TO SITE MARK UP ASB 10250KW VB GRW AP AI 17 01/11 KP ECP ECP K1282 AS BUILT TO SITE MARK UP ASB 10250KW VB GW AP	GD SJG SF 22 05/18 CSM ECP ECP K1729 AS BUILT TO SITE MARK UP ASB T18025KW JMP GD ML GD SF 21 12/16 BB ECP ECP XK16137 AS BUILT TO SITE MARK UP ASB T18025KW JMP AB ML GD SF 21 12/16 BB ECP ECP XK16137 AS BUILT TO SITE MARK UP ASB 16474KW JMP AB ML GD SF 20 05/13 JC ECP ECP K1477 AS BUILT TO SITE MARK UP ASB 13112KW JMP AC SG ML GD SF 20 05/13 JC ECP ECP K1426 AS BUILT TO SITE MARK UP ASB 13112KW JMP AC SG ML GD SF 19 12/12 CG ECP ECP K1426 AS BUILT TO SITE MARK UP ASB 12270KK JMP AC ML SG AP AI 17 01/11 KP ECP ECP K1326 AS BUILT TO SITE MARK UP ASB 10250KW VB LM GW AP AI 17	GD SJG SF 22 05/8 CSM ECP ECP K1729 AS BUILT TO SITE MARK UP ASB T18025KW JMP GD . ML GD . SF 21 12/16 BB ECP ECP K1729 AS BUILT TO SITE MARK UP ASB T18025KW JMP AB ML GD . SF 21 12/16 BB ECP ECP K1729 AS BUILT TO SITE MARK UP ASB 16474KW JMP AB ML GD . SF 20 05/13 JC ECP ECP K1477 AS BUILT TO SITE MARK UP ASB 13112KW JMP AC . SG ML . 19 12/12 CG ECP ECP K1426 AS BUILT TO SITE MARK UP ASB 13112KW JMP AC . ML SG . 18 05/11 JC ECP ECP K1326 AS BUILT TO SITE MARK UP ASB 10250KW VB AP CRP AP AI 17 01/11 KP ECP ECP K1326 AS BUILT TO SITE MARK UP ASB 10250KW VB LM . GW	GD SJG . SF 22 05/18 CSM ECP ECP K1729 AS BUILT TO SITE MARK UP ASB T18025KW JMP GD . KB ML GD . SF 21 12/16 BB ECP ECP K1729 AS BUILT TO SITE MARK UP ASB T18025KW JMP AB . KB ML GD . SF 21 12/16 BB ECP ECP K1729 AS BUILT TO SITE MARK UP ASB 16474KW JMP AB . ATH ML GD . SF 20 05/13 JC ECP ECP K1477 AS BUILT TO SITE MARK UP ASB 13112KW JMP AC . ATH SG ML . . 19 12/12 CG ECP ECP K1426 AS BUILT TO SITE MARK UP ASB 12270KK JMP AC . ATH ML SG . . 18 05/11 JC ECP ECP K1426 AS BUILT TO SITE MARK UP ASB 10250KW VB AP . AI GRP AP . AI 17 01/11 KP ECP ECP K1326 AS BUILT TO SITE MARK UP ASB 10250KW V	GD SJG SF 22 05/18 CSM ECP ECP K1729 AS BUILT TO SITE MARK UP ASB T18025KW JMP GD KB ML GD SF 21 12/16 BB ECP ECP K1129 AS BUILT TO SITE MARK UP ASB 16474KW JMP AB SF ATH ML GD SF 20 05/13 JC ECP ECP K1477 AS BUILT TO SITE MARK UP ASB 13112KW JMP AC ATH SG ML GD SF 20 05/13 JC ECP K1426 AS BUILT TO SITE MARK UP ASB 12270KK JMP AC ATH SG ML GG 18 05/11 JC ECP K1426 AS BUILT TO SITE MARK UP ASB 12270KK JMP AC ATH ML SG 18 05/11 JC ECP K1426 AS BUILT TO SITE MARK UP ASB 12270KK VB AP AI AI GRV AP AI 17 01/11 KP ECP K126 AS BUILT TO SITE MARK UP ASB 10250KW

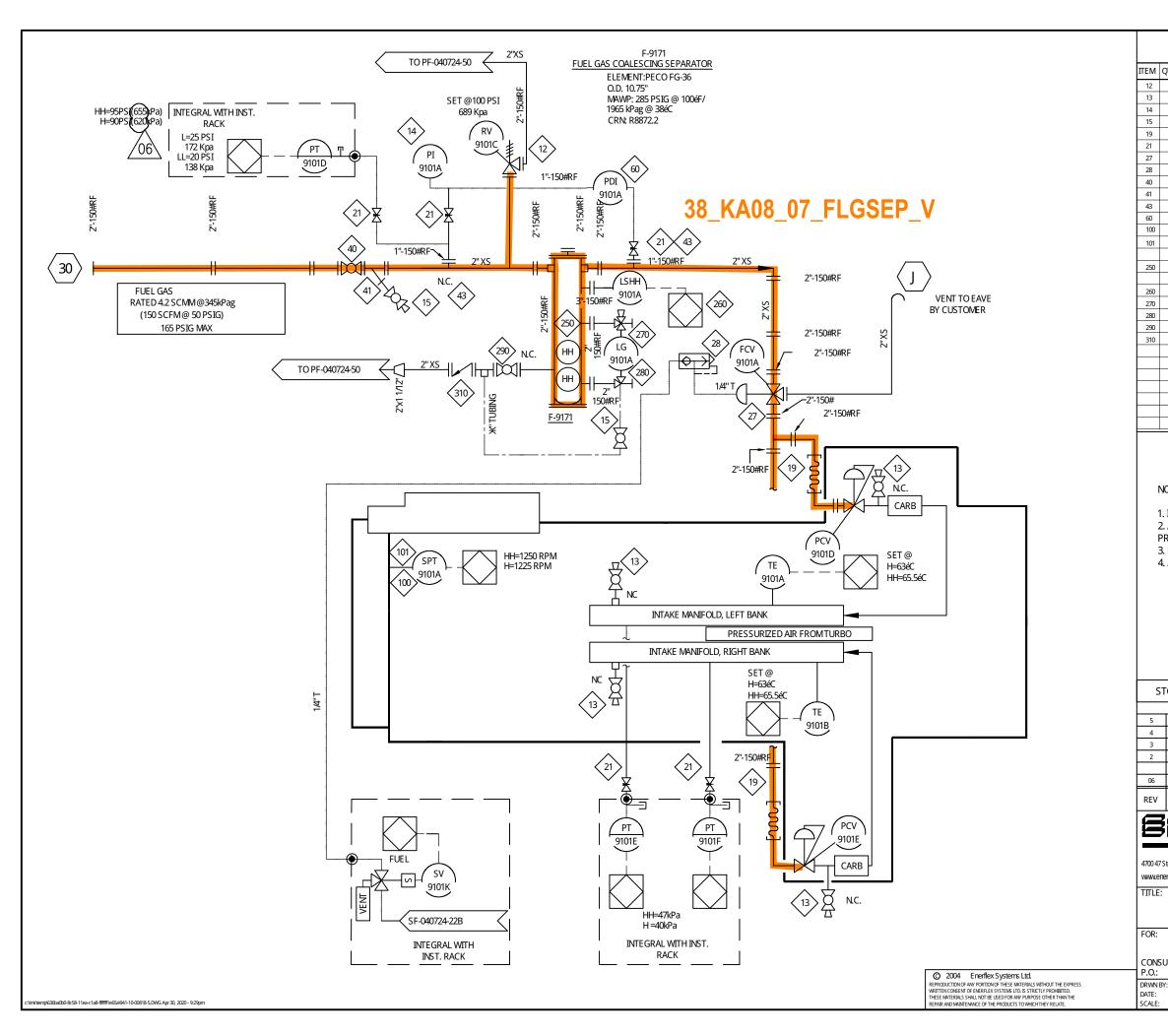
			BILL OF MATERIAL
ITEM	QTY	EFX CODE	DESCRIPTION
10	1	NPN-REQ	VALVE, CONTROL, 2" 600#RF, WCC, 2-15/16", FO, 6-30 PSI C/W LIMIT SWITCH 73-1352AA2 TOPWORXS SAA [FISHER, 657-ET-40]
20	1	NPN-REQ	VALVE, CONTROL, 2"600# RF, WCB, E%#57, FC, 6-30 PSI C/W LIMIT SWITCH 73-1352AA2 TOPWORXS SAA [FISHER, 667-ET-40]
30	1	NPN-REQ	>>VALVE, CONTROL, 6"600#RF, FP, LCC CW BALL VALVE, TRUNNION, NACE [TK, DF06F06RGLBCCIX] & ACT [BETTIS CBA103055R80
		-11-CWJ FAI	L CLOSED C/W & WESTLOCK 2249-BY POSITION MONITOR, C/W QUICK VENT, 1/4"X 3/8" NPT [WABCO, P52935-2]
40	1	NPN-REQ	>>VALVE, CONTROL, 3" 600#RF, FP, LCC C/W BALL VALVE, TRUNNION, NACE [TK, DF03F06RLLBCCIN] & ACT [EL-O-MATIC, ESA600
60	2	-4/A/L2-LT] F NPN-REO	AL CLOSED, CW/&WESTLOCK 2249-BY POSITION MONITOR, C/W QUICK VENT, 1/4" X 38" NPT [WABCO, P52935-2] >>VALVE, CONTROL, 1" 600#RF, FP, WCC C/W BALL VALVE, FLOATING, NACE [TK, FF00F08RLNNCCVN]&
60	2		>>valve, control, 1° bourre, pp, wec on ball valve, floating, nale (ir, prodrokling.cvn)g. Atto, esa200-4/A/2-LTJ F All Closed, C/W & Westlock 2249-by Position Monitor.
70	1	NPN-REQ	>VALVE, CONTROL, 1*600#RF, FP, WCC CW BALL VALVE, FLOATING, NACE [TK, FF00F06RLNNCCVN]8.
			ATIC, ESA200-4/AL2-LT] FAIL OPEN, C/W & WESTLOCK 2249-BY POSITION MONITOR.
71	1	NPN-REQ	>>VALVE, CONTROL, 1" 600# RF, FP, WCC C/W BALL VALVE, FLOATING, NACE [TK, FF00F06RLNNCCVN]&
		ACT [EL-O-I	ATIC, ESA200-4/A/L2-LTJ FAIL CLOSED, C/W & WESTLOCK 2249-BY POSITION MONITOR.
80	1	NPN-REQ	>>VALVE, CONTROL, 2"600#RF, RP, LCC C/W BALL VALVE, FLOATING, NACE [TK, FF02R06RLNNCCVN]&
		ACT [EL-O-P	ATIC, ESA200-4/A/L2-LTJ FAIL OPEN, C/W & WESTLOCK 2249-BY POSITION MONITOR.
100	1	103715	VALVE, CHECK, PISTON, 3' 600#RF, CS, SS TRIM, NACE [DANIEL, 305AA]
104	3	112629	VALVE, SET GAUGE, SWEET, 1/2" FNPT X 3/4" NNPT, CS, 3815#(PENBERTHY, 330) 3/4")
108	1	117694	VALVE, NEEDLE, 1/4" MNPT X 1/4" FNPT, 316SS BODY [AGCO, HIVDS-22]
109 110	2	104428	GAUGE, LEVEL, CS WITH REFLEX FLAT GLASS, 1820#[PENBERTHY, 1RL7] GAUGE, LEVEL, CS WITH REFLEX FLAT GLASS, 2020#[PENBERTHY, 2RL4]
110	1	116959 118246	GAUGE, LEVEL, CS WITH REFLEX FLAT GLASS, 2020# [PENBERTHY, 2RL4] VALVE, NEEDLE, 34" NNPT X 1/2" FNPT, 3165S, NACE [AGCO, H7VIS-46Q-SG]
140	1	122724	VALVE, NEEDLE, SI4 WWH A 1/2 FRM1, S1055, NALE (AULU, HVIS-40Q-S10) VALVE, PSV, 1° 600#RFX 2° 150#RF, 110 °D° OR, NACE I, [FARRIS, 26DA13-12000]
151	2	114010	VALVE, NEEDLE, 34" NNPT X 1/2" FNPT, 316SS, NACE (AGCO, M5VIS-46-SG)
160	1	121626	VALVE, PSV, PILOT, 1-1/2" 600#RF X 3" 150#RF, .785 OR, [FARRIS, 38HC13-12000]
170	1	121626	VALVE, PSV, PILOT, 1-1/2" 600HRF X 3" 150HRF, .785 OR, [FARRIS, 38HC13-12000]
180	1	122476	VALVE, PSV, 34# 600#X 1* 150#RF, .110 OR, NACE I [FARRIS, 27DA23-320/00]
200	2	120642	VALVE, CONTROL, 1" 600#RF, LCC, 14" OR, FC, NACE, 0-35 PSI [FISHER, D4]
220	3	119416	SWITCH, LEVEL, 3" 600HRF, 316SS, XP, ATEX C/WSS FLOAT [MAGNETROL, T35-008C-212]
240	1	104872	REGULATOR, 14" NPT, ALUM, 0-125#, TAPPED (WO PI) [FISHER, 67CFR-601/SPEC]
260	1	NPN-REQ	CONTROLLER, LEVEL, 4" 600# RF, SNAP-ACTING, NACE CW PVC DISPLACER [FISHER, L2] - Direct Snap Acting
300	1	120634	VALVE, CHECK, WAFER, 2"600#RF DUAL, CS, NACE [TOPFLOW, AW-023149-VX-99]
330 340	2	NPN-REQ NPN-REO	VALVE, GLOBE, 2°600#RF, WOG, RP, NACE (CRANE, 28-3644LUNF) SA105N BODY, API TRIM 12 VALVE, GLOBE, 1°600#RF, WOG, RP, NACE (CRANE, 18-3644LUNF) SA105N BODY, API TRIM 12
340	1	NPN-REQ 107929	VALVE, GLUBE, I' BOUFRF, WOG, KP, NACE (CRANE, 18-3644LUNF) SATION BOUY, API TRIM 12 GAUGE, PRESSURE, BM, 4" LF, 0-600 PSI DUAL, 1/2" NPT (MIKA, 233.54)
361	1	107329	GAUGE, PRESSURE, BIJ 4* LF, 0-000 PST DUAL, 1/2* NPT (WIA, 233.54) GAUGE, PRESSURE, BIJ 4* LF, 0-1500 PST DUAL, 1/2* NPT (WIA, 233.54)
370	12	106375	FLANGE, RF RED HUB. 1" 600#X 344" NPT SA105N
372	8	106407	FLANGE, RF RED HUB, 2" 600#X 3/4" NPT SA105N
373	2	106224	FLANGE, RF BLIND, 1-1/2" 600#SA105N
374	5	106237	FLANGE, RF BLIND, 1° 600#SA105N
375	1	106231	FLANGE, RF BLIND, 1" 150#SA105N
376	2	109128	SPECTACLE BLIND, 4" 600#RF, SA516-70N, 5/8" THK
377	3	106262	FLANGE, RF BLIND, 2° 600#SA105N
378	1	106296	FLANGE, RF BLIND, 4' 600#SA10SN
379 380	1	109125	SPECTACLE BLIND, 3° 600#RF, SA516-70N, 1/2"THKO SPECTACLE BLIND, 1-1/2"600#RF, SA516-70N, 1/4"THK
.380 390	2	118536	SPECIALLE BLIND, 1-1/2' BUIRKF, SASIG-JUN, 141 THK ***TWELL, FLANGED, 316LSS, 2' 600#RF, 1/2' FNPT, 260' BORE, TAPERED
400	2	103577	GAUGE, TEMP, 5" DIAL, 12" STEM, 0-250 DEG.F DUAL, 1/2" NPT [TREND, 50120]
410	1	NPN-REQ	TCOUPLE ASSY, CSA, XP C/W 1-1/2" 600#RF TWELL, 316LSS, [PYROMATION, #K48G-HF415R60708-8HN71-SL] K-STYLE
430	2	104245	STRAINER, CONE, 4" 600#CS, 40 MESH, 150% FLOW AREA
440	1	NPN-REQ	VALVE, BALL, 1" 600#RF, FP, LCC, NACE C/W LOCKING HANDLE [TK, FF00F06RLNNCCVN] - Floater type full port ball valve -
462	2	105326	***ORIFICE PLATE, TYPE 520, 316LSS, 1/8" THK, 4" 600# RF, 2.0" ID.
470	4	105266	**ORIFICE PLATE, TYPE 520, 316LSS, 1/8"THK, 3"900#RF, 1.75"ID.
472	4	105266	***ORIFICE PLATE, TYPE 520, 316LSS, 1/8" THK, 3" 900#RF, 1.25" ID.
490	2	107949	GAUGE, TEMP, 3' DIAL, 9' STEM, 0-250 DEG.F DUAL, 1/2' NPT [TREND, 33090]
495 500	4	107959	GAUGE, TEMP, 3" DIAL, 9" STEM, 50-500 DEG.F DUAL, 1/2" NPT [TREND, 33090]
~~~	6	115408	MMTWELL, FLANGED, 316LSS, 1-1/2* 600# RF, 1/2* FNPT, 260* BORE, TAPERED
510 520	3	102949 NPN-REO	VALVE, BALL, 1.2" NPT, 2000#WOG, RP, 3165S, NACE C/W (INVCO, C1-R05S20A) SWITCH, PRESSURE, DIFFERENTIAL, RANGE 30-300 PSID (210 - 2070 kPaD, IECEX (UE, J 120K-38-M403-QC1-M201)
ىمد		MWP 1000 PSIG. MC	SWITCH, PRESSURE, DIPPERENTIAL, KANGE 30-300 PSID (210 - 2070 KPBD, IECEX (DE, ) 120K-38-WAU3-QC1-W201) UNITED ON INSTRUMENT RACK.
600	4	119659	TCOUPLE, SURFACE MOUNT., 24" LONG, TYPE K, SAA (MOORE, SEN1/CL24/D25/S3164/MSTCKU-CLAMP-GRIP-TB6-SAA (LH2NSA))
700	7	102752	FTG, TUBE, 38'T FUSIBLE PLUG, 255 DEG.F, 316SS [SWAGELOK, SS-6-FTA-255]
		-	
			BILL OF MATERIAL: W 040724-50 : - PROCESS FLOW, 1/2 STAGE, SWEET
	_		DATE-TIME EXPORTED: 2005-04-07-13.01

### NOTES:

1. BLOWDOWN + VENT PIPING MATERIAL TO BE

FUSIBLE PLUGS OF FIRE LOOP

/


3. ORIFICE PLATE TO BE REPLACE FOR APPLICATION

4. VALVE CLOSED IN TWO STAGE OPERATION

5. FOR CLIN ECTION BY PURCHASER

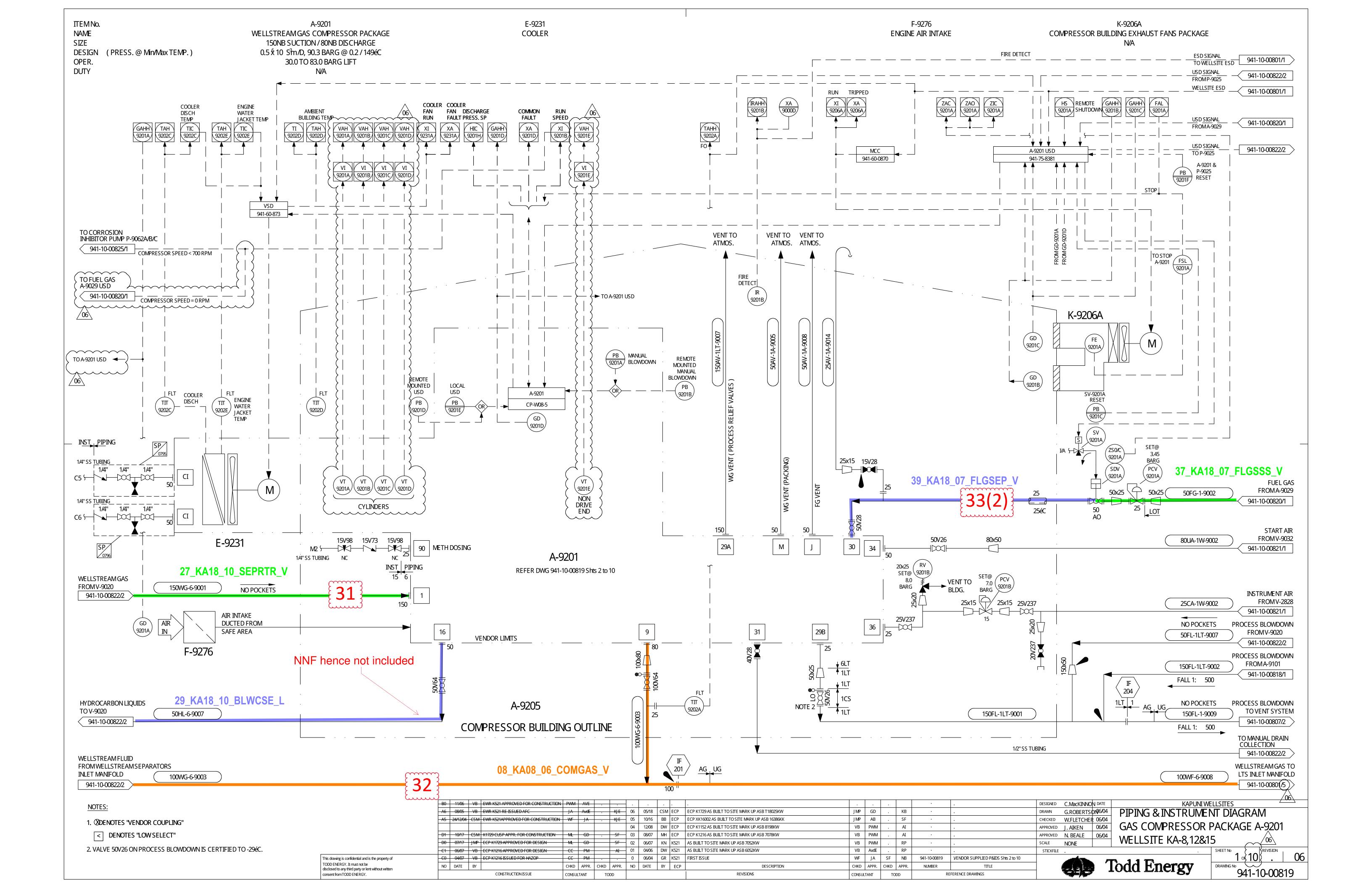
6. FOR FUTURE TW/TE FOR COOLER FD CONTROL

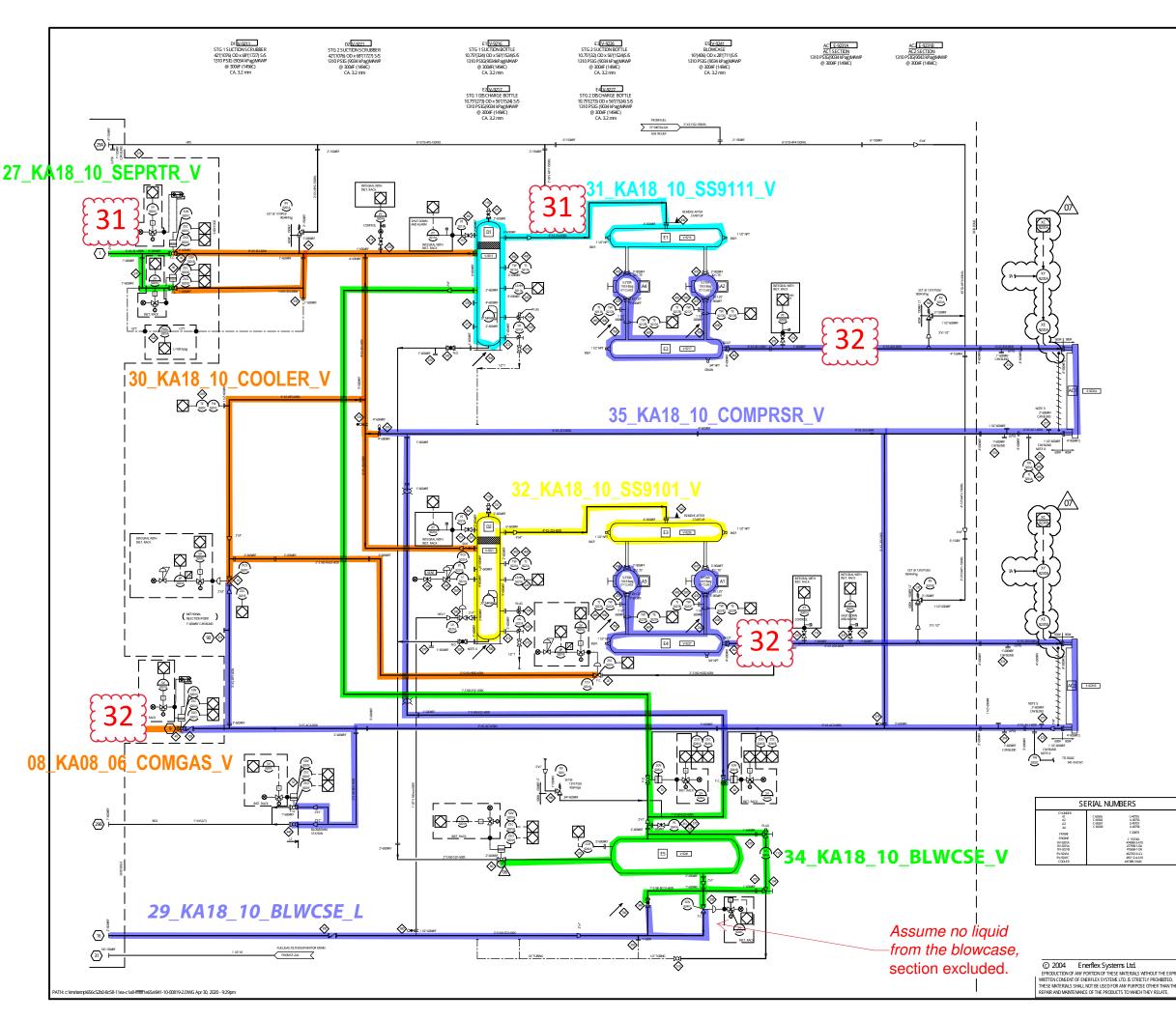
STOS DWG 941-	No.: 10-00818	v	V0100275	SHT No.: 2 of 10
5	EWR K521 AS BUILT TO ASB 6052KW	05/06	DW	VB/AvdE/RP
07	ECP K1729 AS BUILT TO SITE MARK UP ASB T18025KW	05/18	CSM	J MP / GD / K
*1	K1729 CUSP RE-APPROVED FOR CONSTRUCTION	02/10	CSM	GD/SJG/S
*0	K1729 CUSP APPROVED FOR CONSTRUCTION	10/17	CSM	ML/GD/SI
6	ECP KB79 AS BUILT TO SITE MARK UP - ASB 10178KW	09/10	JC	VB/AP/AI
REV	DESCRIPTION	DATE	DRAWN BY	CHECKEE
8F	X Compression			01
	Calgary AB Canada T2B 3R1 Canada Tel. +1.408.236.6800 Fax +1.403.279.0367	<u>.</u>		
4700 47 Street SE	Calgary AB Canada T2B 3R1 Canada Tel. +1.408.236.6800 Fax +1.403.279.0367	II.		
4700.47 Street SE www.enerflex.co	Calgay AB Canada T28 381 Canada Tel +1.403.2566800 Fax +1.403.279.0367 m PROCESS AND INSTRUMENTAT			
4700 47 Street SE www.enerflex.co	Calgary AB Canada T28 381 Canada Tel, +1.403.236.6800 Fax +1.403.279.0367 m	LTD 156 EF-112-		
4700 47 Street SE www.enerflex.co	Calgay AB Canada T28 3R1 Canada Tcl. +1.403.2566800 Fax +1.403.279.0387 m PROCESS AND INSTRUMENTA ARIEL J GE44, WAUK, L5790 GL, AIR-9 1/2 STAGE COMPRESSOR P	LTD 156 EF-112- ACKAGE		
4700 47 Street SE www.enerflex.co TITLE:	Calgay AB Canada T28 381 Canada Tel. +1.403.2566800 Fax +1.403.279.0367 m PROCESS AND INSTRUMENTIA ARIEL J GE4, WAUK, L5790 GL, AIR-> 1/2 STAGE COMPRESSOR P SHELL TODD OIL SE	LTD 156 EF-112- ACKAGE		
4700 47 Street SE www.enerflex.co TITLE:	Calgary AB Canada T28 3R1 Canada Tcl. +1 A03.2566800 Fax +1.403.279.0367 m PROCESS AND INSTRUMENTIA' ARIEL J GEV, WAUK, L5790 GL, AIR-) 1/2 STAGE COMPRESSOR P SHELL TODD OIL SE TAG NO: A-9101 (KA-815 WELL HEAD COMPRESSOR) VI: TRANSFIELD WORLEY NEW ZEALAND	( LTD 156 EF-112- ACKAGE RVICES	24 ANAKI NEW ZEA	
4700 47 Street SE www.enerflex.cc TITLE: FOR: CONS ULTAI	Calgary AB Canada T28 3R1 Canada Tcl. +1 A03.2566800 Fax +1.403.279.0367 m PROCESS AND INSTRUMENTIA' ARIEL J GEV, WAUK, L5790 GL, AIR-) 1/2 STAGE COMPRESSOR P SHELL TODD OIL SE TAG NO: A-9101 (KA-815 WELL HEAD COMPRESSOR) VI: TRANSFIELD WORLEY NEW ZEALAND	LTD 156 EF-112- ACKAGE RVICES LSD:TAR J OB No.:	24 ANAKI NEW ZEA	



# BILL OF MATERIAL

		BILL OF MATERIAL
<b>2</b> ΤΥ	EFX CODE	DESCRIPTION
1	121317	VALVE, PSV, 1" 150#RF X 2" 150#RF, .110 OR, NACE I, [FARRIS, 26DA10-120/00]
4	102950	VALVE, BALL, 1/4" NPT, 2000# WOG, RP, 316SS, NACE C/W [NAVCO, C1-R02S20A]
1	107911	GAUGE, PRESSURE, BM, 2-1/2" LF, 0-300 PSI DUAL, 1/4" NPT [WIKA, 233,53]
2	102949	VALVE, BALL, 1/2" NPT, 2000# WOG, RP, 316SS, NACE C/W [NAVCO, C1-R05S20A]
2	NPN-REQ	HOSE, BRAIDED STEEL, 2" 150#RF X 2" NPT X 18" LONG
5	117694	VALVE, NEEDLE, 1/4" MNPT X 1/4" FNPT, 316SS BODY [AGCO, H1VDS-22]
1	118300	VALVE, GAS, 3-WAY, 2" 150#RF, 316SS BODY, AUTOMATED [XOMOX, 034-FT-D-6-6-P1-A]
1	104804	VALVE, QUICK VENT, 1/4" X 3/8" NPT [WABCO, P52935-2]
1	100898	VALVE, BALL, 2" 150#RF, FP, CS, NACE C/W HANDLE [TK, FF02F01RLNNCCTT]
1	118163	STRAINER, Y, 2" 150#RF, 285 PSIG MAWP, CS, 1/32" SS SCREEN [ALTA, NYF-150]
2	106364	FLANGE, RF RED HUB, 1"150#X 1/2" NPT SA105N
1	122036	GAUGE, PRESSURE, DIFF., 3" DIAL, 0-30 PSID DUAL, BACK MT, 316SS [WIKA, 700.04]
1	104467	MAGNETIC PICK-UP, 5/8"-18 THREAD X 2-1/2" LONG, CSA, IS [DYNALCO, M204]
1	NPN-REQ	J UNCTION BOX ASSEMBLY, FLAMEPROOF, RANGE 3000, Zone 1 EExd IIB T6 IP66 ATEX
		certified fitted with MK6/6 terminal block.
1	NPN-REQ	>>VESSEL, FUEL GAS, 10-3/4" OD, 285 MAWP @ 100DEG.F, SWEET C/W FG-36 ELEMENT,
		EFX DWG#V040724L
1	119414	SWITCH, LEVEL, 3" 150#RF, 316SS, XP, ATEX C/W SS FLOAT [MAGNETROL, T31-003A-212]
1	112629	VALVE, SET GAUGE, SWEET, 1/2" FNPT X 3/4" MNPT, CS, 3815#[PENBERTHY, 330] 3/4"]
1	104433	GAUGE, LEVEL, CS WITH REFLEX FLAT GLASS, 2240#[PENBERTHY, 1RL1]
1	100247	VALVE, BALL, 2" 150#RF, RP, CS, NACE C/W HANDLE [TK, FF02R01RLNZCCTT]
1	116009	VALVE, CHECK, SWING, 2" 150#RF, CS, NACE [NAVCO, CS-F20R01S]
		***************************************
		BILL OF MATERIAL: W 040724-22A-AB : FEUL GAS SYSTEMS
		DATE-TIME EXPORTED: 2005-04-07-11.33


## NOTES:


 INSTRUMENTS USING INSTRUMENT AIR MUST BE VENTED TO ATMOSPHERE.
 ALL SERVICE LINES OPERATING ABOVE 15 PSIG MUST BE PRESSURE TESTED PER TI PROCEDURE IN THE QC MANUAL.
 MANIFOLD BOOST PRESSURE TO BE SET ONCE SITE CONDITIONS ARE DETERMINED.

4. ALL TUBING IS 316SS C/W SWAGELOCK FITTINGS.

Tos DWG. No.:	941-10-00818	W0100278	SH	Г. NO.:	5 of 10
EW	r K521 as built to asb 6052kw		04/06	DW	VB/AvdE/RP
FIELD AS	5 BUILT, PER CUSTOMER COMMENTS		05/12/06	PLM	PLM
AS B	JILT, PER CUSTOMER COMMENTS		05/07/01	PLM	PLM
	as Built		05/04/11	MGN	PLM
ECP X0213 A	AS BUILT TO SITE MARK UP ASB 15217	7KW	08/15	BB	J MP/AB/ATH
	DESCRIPTION		DATE	DRAWN BY	CHECKED BY
	B 3R1 Canada Tel. +1.403.236.6800 Fax				
	SERVIC	CE FLOW			
		SYSTEMS			
	WAUKESH	-A L5790GL			
	SHELL TODD OIL S	SERVICES LI	MITED		
TAG NO.: A-9	101 (KA-8/15 WELL HEAD	COMPRESSOR)			

	TAG NO.	A-9101 (NA-0			J COMPRES.	50K)		
JLT	ANT: TRANS	FIELD WORL	EYNEWZ	EALAN	)	LSD: TAR	ANAKI NEW ZE/	ALAND
50	4568					J OB No.:	040724	
:	DH	DESIGN BY:	PLM	DATE:	04/11/22	DWG	. No.	OP#
	04/12/20	CHKD BY:	PLM	DATE:	04/12/20	SF-0407	77 A 77	22A
	NTS	APPVD BY:		DATE:		5F-040	24+22	ZZA





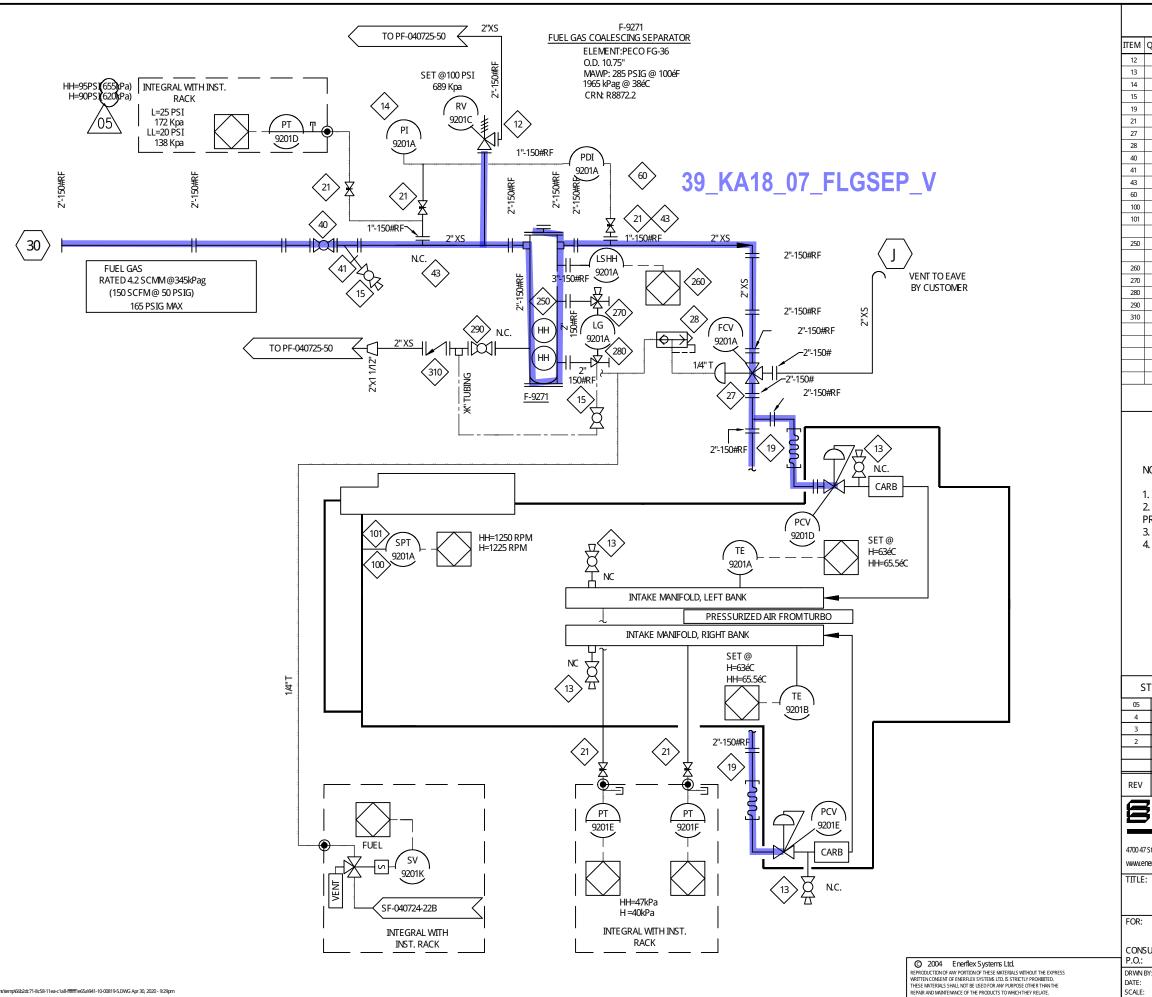
			BILL OF MATERIAL
ITEM	QTY	EFX CODE	DESCRIPTION
10	1	NPN-REQ	VALVE, CONTROL, 2' 600#RF, WCC, 2-15/16', FO, 6-30 PSI C/W LIMIT SWITCH 73-1352AA2 TOPWORXS SAA [FISHER, 657-ET-40]
20	1	NPN-REQ	VALVE, CONTROL, 2" 600#RF, WCB, E%#57, FC, 6-30 PSI C/W LIMIT SWITCH 73-1352AA2 TOPWORXS SAA [FISHER, 667-ET-40]
30	1	NPN-REQ	>>VALVE, CONTROL, 6' 600#RF, FP, LCC C/W BALL VALVE, TRUNNION, NACE [TK, DF06F06RGLBCCIX] & ACT [BETTIS CBA10305SR80
		-11-CWJ FAI	. CLOSED C/W & WESTLOCK 2249-BY POSITION MONITOR, C/W QUICK VENT, 1/4" X 3/8" NPT [MABCO, P52935-2]
40	1	NPN-REQ -4/A/L2-LTLF	>>VALVE, CONTROL, 3"600#RF, FP, LCC CW BALL VALVE, TRUNNION, NACE [TK, DF03F06RLLBCCIN] & ACT [EL-O-MATIC, ESA600
60	2	-4/A/L2-LTJ F NPN-REO	AL CLOSED, C/W & WESTLOCK 2249-BY POSITION MONITOR, C/W QUICK VENT, 14° X 38° NPT (WABCO, P52935-2) >>VALVE. CONTROL 1° 600# RF. FP. WCC C/W BALL VALVE. FLOATING, NACE ITK, FF00F06RLNNCC/VN&
00	2		ATIC, ESA200-4/AL2-LTJ F ALL CLOSED, C/W & WESTLOCK 22/9-BY POSITION MONITOR.
70	1	NPN-REQ	>>VALVE, CONTROL, 1°600#RF, FP, WCC C/W BALL VALVE, FLOATING, NACE [TK, FF00F06RLNNCCVN]8.
			ATIC, ESA200-4/A/L2-LTJ FAIL OPEN, C/W & WESTLOCK 2249-BY POSITION MONITOR.
71	1	NPN-REQ	>>VALVE, CONTROL, 1"600#RF, FP, WCC C/W BALL VALVE, FLOATING, NACE [TK, FF00F06RLNNCC/VN]&
		ACT [EL-O-P	NATIC, ESA200-4/A/L2-LTJ FAIL CLOSED, C/W & WESTLOCK 2249-BY POSITION MONITOR.
80	1	NPN-REQ	>>VALVE, CONTROL, 2"600#RF, RP, LCC C/W BALL VALVE, FLOATING, NACE [TK, FF02R06RLNNCCVN]&
		ACT [EL-O-P	ATIC, ESA200-4/A/L2-LTJ FAIL OPEN, C/W & WESTLOCK 2249-BY POSITION MONITOR.
100	1	103715	VALVE, CHECK, PISTON, 3" 600#RF, CS, SS TRIM, NACE [DANIEL, 305AA]
104	3	112629	VALVE, SET GAUGE, SWEET, 1/2" FNPT X 34" NNPT, CS, 3815#[PENBERTHY, 330] 34"]
108	1	117694	VALVE, NEEDLE, 14" NNPT X 14" FNPT, 316SS BODY (AGCO, HIVDS-22)
109	2	104428	GAUGE, LEVEL, CS WITH REFLEX FLAT GLASS, 1820#[PENBERTHY, 1RL7]
110	1	118959	GAUGE, LEVEL, CS WITH REFLEX FLAT GLASS, 2020#[PENBERTHY, 2RL4] VALVE, NEEDLE, 34" INIVIT X 1/2" FNPT, 3165S, NACE JAGCO, H7/JIS-46Q-SG]
140	1	122724	VALVE, NEEDLE, S4 WWH A 1/2 FNP1, S1035, WALE [AGU.O, H7/15-46Q-S10] VALVE, PSV, 1° 600#RFX 2° 150#RF, 110 °D° OR, NACE [, [FARRIS, 26DA13-12000]
151	2	114010	VALVE, NEEDLE, 34" MVPT X 1/2" FNPT, 316SS, NACE [AGCO, M5/IS-46-SG]
160	1	121626	VALVE, PSV, PILOT, 1-1/2" 600#RF X 3" 150#RF, .785 OR, [FARRIS, 38HC13-12000]
170	1	121626	VALVE, PSV, PILOT, 1-1/2" 600#RF X 3" 150#RF, .785 OR, [FARRIS, 38HC13-12000]
180	1	122476	VALVE, PSV, 344° 600#X 1° 150#RF, .110 OR, NACE I [FARRIS, 27DA23-32D/00]
200	2	120642	VALVE, CONTROL, 1"600#RF, LCC, 1/4" OR, FC, NACE, 0-35 PSI [FISHER, D4]
220	3	119416	SWITCH, LEVEL, 3" 600#RF, 316SS, XP, ATEX C/W SS FLOAT [MAGNETROL, T35-00BC-212]
240	1	104872	REGULATOR, 14" NPT, ALUM, 0-125#, TAPPED (WO PI) [FISHER, 67CFR-601/SPEC]
260	1	NPN-REQ	CONTROLLER, LEVEL, 4" 600# RF, SNAP-ACTING, NACE CW PVC DISPLACER (FISHER, L2) - Direct Snap Acting
300	1	120634	VALVE, CHECK, WAFER, 2" 600#RF DUAL, CS, NACE [TOPFLOW, AV4023149-VX-99]
330 340	2	NPN-REQ NPN-REO	VALVE, GLOBE, 2° 600# RF, WOG, RP, NACE [CRANE, 2B-3644LIN+F] SA105N BODY, API TRIM 12 VALVE, GLOBE, 1° 600# RF, WOG, RP, NACE [CRANE, 1B-3644LIN+F] SA105N BODY, API TRIM 12
340	1	NPN-REQ 107929	VALVE, GLUBE, I' BUWFKF, WUG, KP, NALE [LKANE, 18-3644LUNF] SATUSIN BUDY, APT KUM 12 GAUGE, PRESSURE, BM 4" LF, 0-600 PSI DUAL, 1/2" NPT [WIKA, 23354]
361	1	107329	GAUGE, PRESSURE, BM 4" LF, 0-1500 PST DUAL, 1/2" NPT (WKA, 233.54) GAUGE, PRESSURE, BM 4" LF, 0-1500 PST DUAL, 1/2" NPT (WKA, 233.54)
370	12	106375	FLANGE, RF RED HUB, 1" 600#X 34" NPT SA105N
372	8	106407	FLANGE, RF RED HUB, 2" 600#X 34" NPT SA105N
373	2	106224	FLANGE, RF BLIND, 1-1/2' 600#SA105N
374	5	106237	FLANGE, RF BLIND, 1° 600#SA105N
375	1	106231	FLANGE, RF BLIND, 1" 150#SA105N
376	2	109128	SPECTACLE BLIND, 4" 600#RF, SA516-70N, 5/8" THK
377	3	106262	FLANGE, RF BLIND, 2" 600#SA105N
378	1	106296	FLANGE, RF BLIND, 4° 600# SA105N
379 380	1	109125	SPECTACLE BLIND, 3° 600#RF, SAS16-70N, 1/2" THKO SPECTACLE BLIND, 1-1/2" 600#RF, SAS16-70N, 1/4" THK
390	2	118536	SPECIALE BLIND, I-1/2' BOURKF, SASIG-/UN, 14F THK MMTWELL, FLANGED, 316L/S, 2" 600#RF, 1/2" FNPT, 260" BORE, TAPERED
400	2	103577	GAUGE, TEMP, 5' DIAL, 12' STEM, 0-250 DEG.F. DUAL, 1/2' NPT [TREND, 50120]
410	1	NPN-REQ	TCOUPLE ASSY, CSA, XP CW 1-1/2"600#F TWELL, 316LSS, [PYROMATION, #K48G-HF415R60708-8HN71-SL] K-STYLE
430	2	104245	STRAINER, CONE, 4" 600#CS, 40 MESH, 150% FLOW AREA
440	1	NPN-REQ	VALVE, BALL, 1" 600#RF, FP, LCC, NACE CW LOCKING HANDLE [TK, FF00F06RLINNCCVN] - Floater type full port ball valve -
462	2	105326	***ORIFICE PLATE, TYPE 520, 316LSS, 1/8" THK, 4" 600# RF, 2.0" ID.
470	4	105266	***ORIFICE PLATE, TYPE 520, 316LSS, 1/8" THK, 3" 900#RF, 1.75" ID.
472	4	105266	***ORIFICE PLATE, TYPE 520, 316LSS, 1/8" THK, 3" 900#RF, 1.25" ID.
490	2	107949	GAUGE, TEMP, 3" DIAL, 9" STEM, 0-250 DEG.F DUAL, 1/2" NPT [TREND, 33090]
495 500	4	107959	GAUGE, TEMP, 3" DIAL, 9" STEM, 50-500 DEG.F DUAL, 1/2" NPT [TREND, 33090]
~~	6	115408	MATWELL, FLANGED, 316LSS, 1-1/2" 600# RF, 1/2" FNPT, 260" BORE, TAPERED
510 520	3	102949 NPN-REO	VALVE, BALL, 1/2*NPT, 2000#WOG, RP, 3165S, NACE C/W [NAVCO, C1-R05520A] SWITCH, PRESSURE, DIFFERENTIAL, RANGE 30-300 PSID (210 - 2070 kPaD, IECEX [UE, ] 120K-38-M403-QC1-M201]
520		MWP 1000 F	SWITCH, PRESSURE, DIFFERENTIAL, RANGE 30-300 PSID (210 - 20/0 KPaD, IECEX (DE, J 120K-38-WAUS-QC1-W201) SIG, MOUNTED ON INSTRUMENT RACK.
600	4	119659	SID, MOUNIED UNINGTROWENT RALK. T'COUPLE, SURFACE MOUNT, 24" LONG, TYPE K, SAA (MOORE, SENT/CL24/D25/S3164/NSTCKU-CLAWP-GRIP-TB6-SAA (LH2NSA))
700	7	102752	FTG, TUBE, 38'T FUSIBLE PLUG, 255 DEG.F, 3165S (SWAGELOK, SS-6-FTA-255)
		-	
			BILL OF MATERIAL: W040724-50 : - PROCESS FLOW, 1/2 STAGE, SWEET
			DATE-TIME EXPORTED: 2005-04-07-13.01

### NOTES:

1. BLOWDOWN + VENT PIPING MATERIAL TO BE LOW TEMP.

FUSIBLE PLUGS OF FIRE LOOP.

/


3. ORIFICE PLATE TO BE REPLACE FOR APPLICATION.

4. VALVE CLOSED IN TWO STAGE OPERATION

5. FOR CLIN ECTION BY PURCHASER

6. FOR FUTURE TW/TE FOR COOLER FD CONTROL

STOS DWG	5 No.: 941-10-00819	W	0100284	SHT No.: 2 of 10
5	ECP K1379 AS BUILT TO SITE MARK UP - ASB 10178KW	09/10	JC	VB/AP/AI
07	ECP K1729 AS BUILT TO SITE MARK UP ASB T18025KW	05/18	CSM	J MP / GD / KE
*1	K1729 CUSP RE-APPROVED FOR CONSTRUCTION	- 62/18	CSM	GD/SJG/S
	K1729 CUSP APPROVED FOR CONSTRUCTION	10/17	CSM	ML/GD/SF
06	ECP XK17172 AS BUILT TO SITE MARK UP ASB 17230KW	07/17	RR	J MP/TD/SF
REV	DESCRIPTION	DATE	DRAWN BY	CHECKED
	Compression			
	5E Calgary AB Canada T2B 3R1 Canada Tel. +1.403.226.6800 Fax +1.403.279.0867			
4700 47 Street S	5E Calgary AB Canada T28 3R1 Canada Tel. +1.403.236.6800 Fax +1.403.279.0367 com			
4700 47 Street S www.enerflex.e	SE Calgary AB Canada T28 3R1 Canada Tel. +1.403.236.6800 Fax +1.403.275.0367 com PROCESS AND INSTRUMENTATI		24	
4700 47 Street S www.enerflex.e	5E Calgary AB Canada T28 3R1 Canada Tel. +1.403.236.6800 Fax +1.403.279.0367 com	LTD 156 EF-112-	24	
4700 47 Street S www.enerflex.e	E Calgary AB Canada T28 3R1 Canada Tel. +1.403.236.6800 Fax +1.403.279.0967 com PROCESS AND INSTRUMENTATI ARIEL J GE/4, WAUK, L5790 GL, AIR-X I	LTD 156 EF-112- CKAGE	24	
4700.47 Street S www.enerflex. TITLE:	SE Calgary AB Canada T28 3R1 Canada Tel. +1.403.256.6800 Fax +1.403.275.0367 com PROCESS AND INSTRUMENTATI ARIEL J GE/4, WAUK, L5790 GL, AIR-X 1/2 STAGE COMPRESSOR PA/	LTD 156 EF-112- CKAGE	24	
4700.47 Street S www.enerflex. TITLE:	SE Calgary AB Canuda T28 3R1 Canuda Tel. +1.403.256.6800 Far +1.403.279.0967 COM PROCESS AND INSTRUMENTATI ARIELJ GE/4, WAUK, L5790 GL, AIR-X, 1/2 STAGE COMPRESSOR PA SHELL TODD OIL SER TAG NO: A-9201 (KA-815 WELL HEAD COMPRESSOR) ANT: TRANSFIELD WORLEY NEW ZEALAND	LTD 156 EF-112- CKAGE	ANAKI NEW ZEA	ILAND
4700 47 Street S www.eneflext TITLE: FOR: CONSULT/	SE Calgary AB Canuda T28 3R1 Canuda Tel. +1.403.256.6800 Far +1.403.279.0967 COM PROCESS AND INSTRUMENTATI ARIELJ GE/4, WAUK, L5790 GL, AIR-X, 1/2 STAGE COMPRESSOR PA SHELL TODD OIL SER TAG NO: A-9201 (KA-815 WELL HEAD COMPRESSOR) ANT: TRANSFIELD WORLEY NEW ZEALAND	LTD 156 EF-112- CKAGE VICES LSD:TAR J OB No.: 1	ANAKI NEW ZEA	ILAND

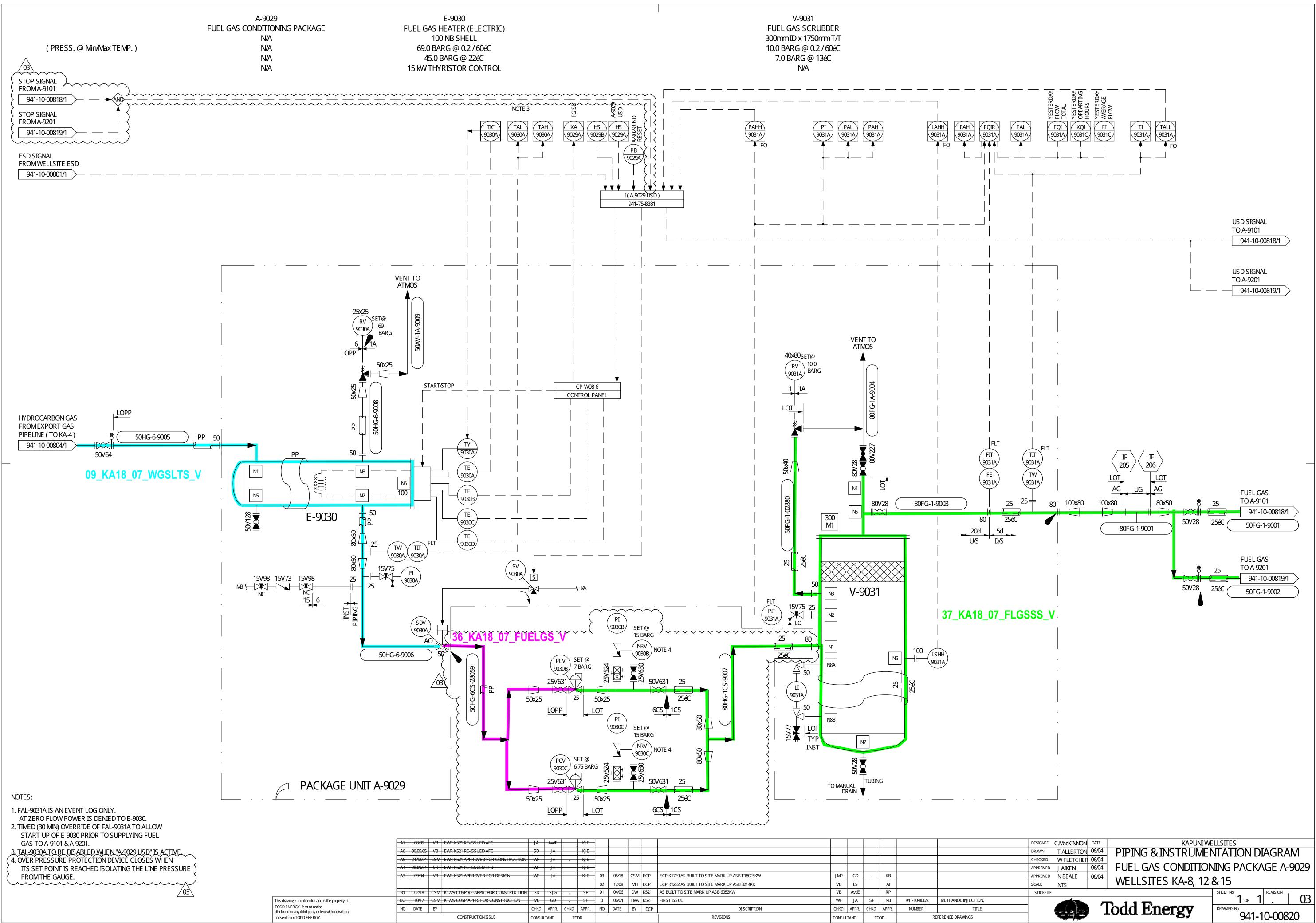


# 

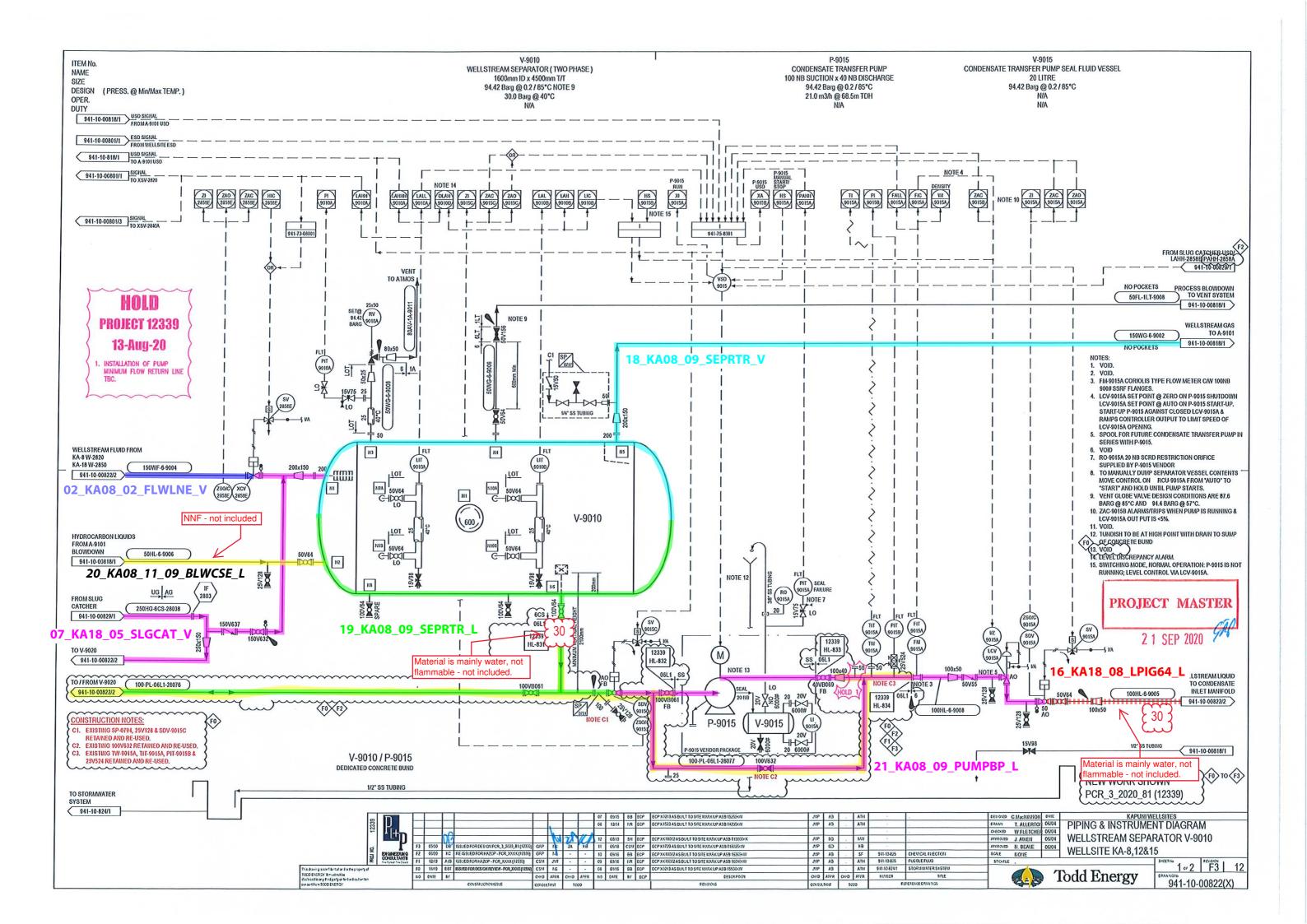
		BILL OF MATERIAL
QTY	EFX CODE	DESCRIPTION
1	121317	VALVE, PSV, 1" 150#RF X 2" 150#RF, .110 OR, NACE I, [FARRIS, 26DA10-120/00]
4	102950	VALVE, BALL, 1/4" NPT, 2000# WOG, RP, 316SS, NACE C/W [NAVCO, C1-R02S20A]
1	107911	GAUGE, PRESSURE, BM, 2-1/2" LF, 0-300 PSI DUAL, 1/4" NPT [WIKA, 233.53]
2	102949	VALVE, BALL, 1/2" NPT, 2000# WOG, RP, 316SS, NACE C/W [NAVCO, C1-R05S20A]
2	NPN-REQ	HOSE, BRAIDED STEEL, 2" 150#RF X 2" NPT X 18" LONG
5	117694	VALVE, NEEDLE, 1/4" MNPT X 1/4" FNPT, 316SS BODY [AGCO, H1VDS-22]
1	118300	VALVE, GAS, 3-WAY, 2" 150#RF, 316SS BODY, AUTOMATED [XOMOX, 034-FT-D-6-6-P1-A]
1	104804	VALVE, QUICK VENT, 1/4" X 3/8" NPT [WABCO, P52935-2]
1	100898	VALVE, BALL, 2" 150#RF, FP, CS, NACE C/W HANDLE [TK, FF02F01RLNNCCTT]
1	118163	STRAINER, Y, 2" 150#RF, 285 PSIG MAWP, CS, 1/32" SS SCREEN [ALTA, NYF-150]
2	106364	FLANGE, RF RED HUB, 1" 150#X 1/2" NPT SA105N
1	122036	GAUGE, PRESSURE, DIFF., 3" DIAL, 0-30 PSID DUAL, BACK MT, 316SS [WIKA, 700.04]
1	104467	MAGNETIC PICK-UP, 5/8"-18 THREAD X 2-1/2" LONG, CSA, IS [DYNALCO, M204]
1	NPN-REQ	J UNCTION BOX ASSEMBLY, FLAMEPROOF, RANGE 3000, Zone 1 EExd IIB T6 IP66 ATEX
		certified fitted with MK6/6 terminal block.
1	NPN-REQ	>>VESSEL, FUEL GAS, 10-3/4" OD, 285 MAWP @ 100DEG.F, SWEET C/W FG-36 ELEMENT,
		EFX DWG#V040724L
1	119414	SWITCH, LEVEL, 3" 150#RF, 316SS, XP, ATEX C/W SS FLOAT [MAGNETROL, T31-003A-212]
1	112629	VALVE, SET GAUGE, SWEET, 1/2" FNPT X 3/4" MNPT, CS, 3815#[PENBERTHY, 330] 3/4"]
1	104433	GAUGE, LEVEL, CS WITH REFLEX FLAT GLASS, 2240#[PENBERTHY, 1RL1]
1	100247	VALVE, BALL, 2" 150#RF, RP, CS, NACE C/W HANDLE [TK, FF02R01RLNZCCTT]
1	116009	VALVE, CHECK, SWING, 2" 150#RF, CS, NACE [NAVCO, CS-F20R01S]
		***************************************
		BILL OF MATERIAL: W 040724-22A-AB : FEUL GAS SYSTEMS
		DATE-TIME EXPORTED: 2005-04-07-11.33

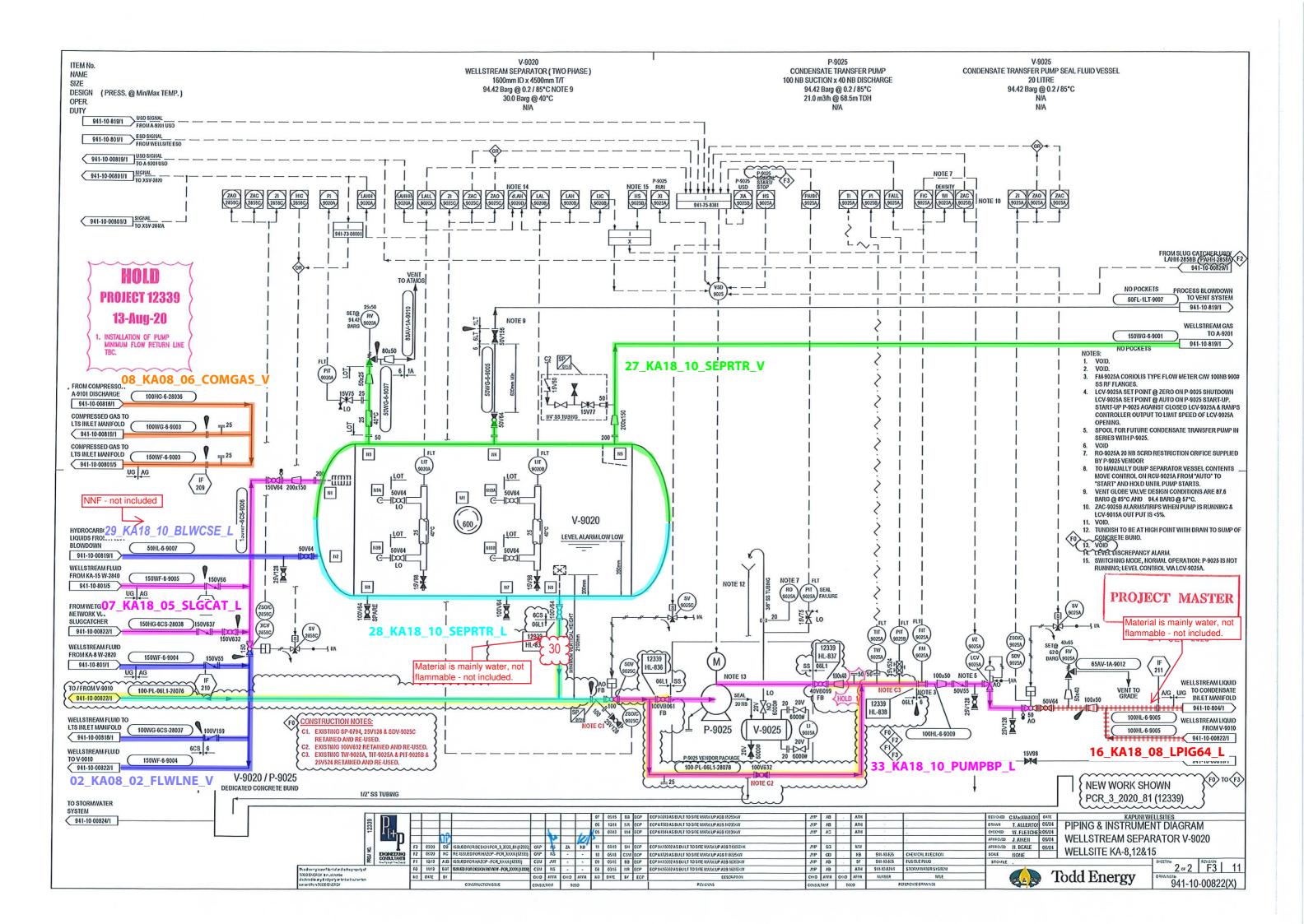
NOTES:

1. INSTRUMENTS USING INSTRUMENT AIR MUST BE VENTED TO ATMOSPHERE. 2. ALL SERVICE LINES OPERATING ABOVE 15 PSIG MUST BE PRESSURE TESTED PER TH PROCEDURE IN THE QC MANUAL. 3. MANIFOLD BOOST PRESSURE TO BE SET ONCE SITE CONDITIONS ARE DETERMINED.

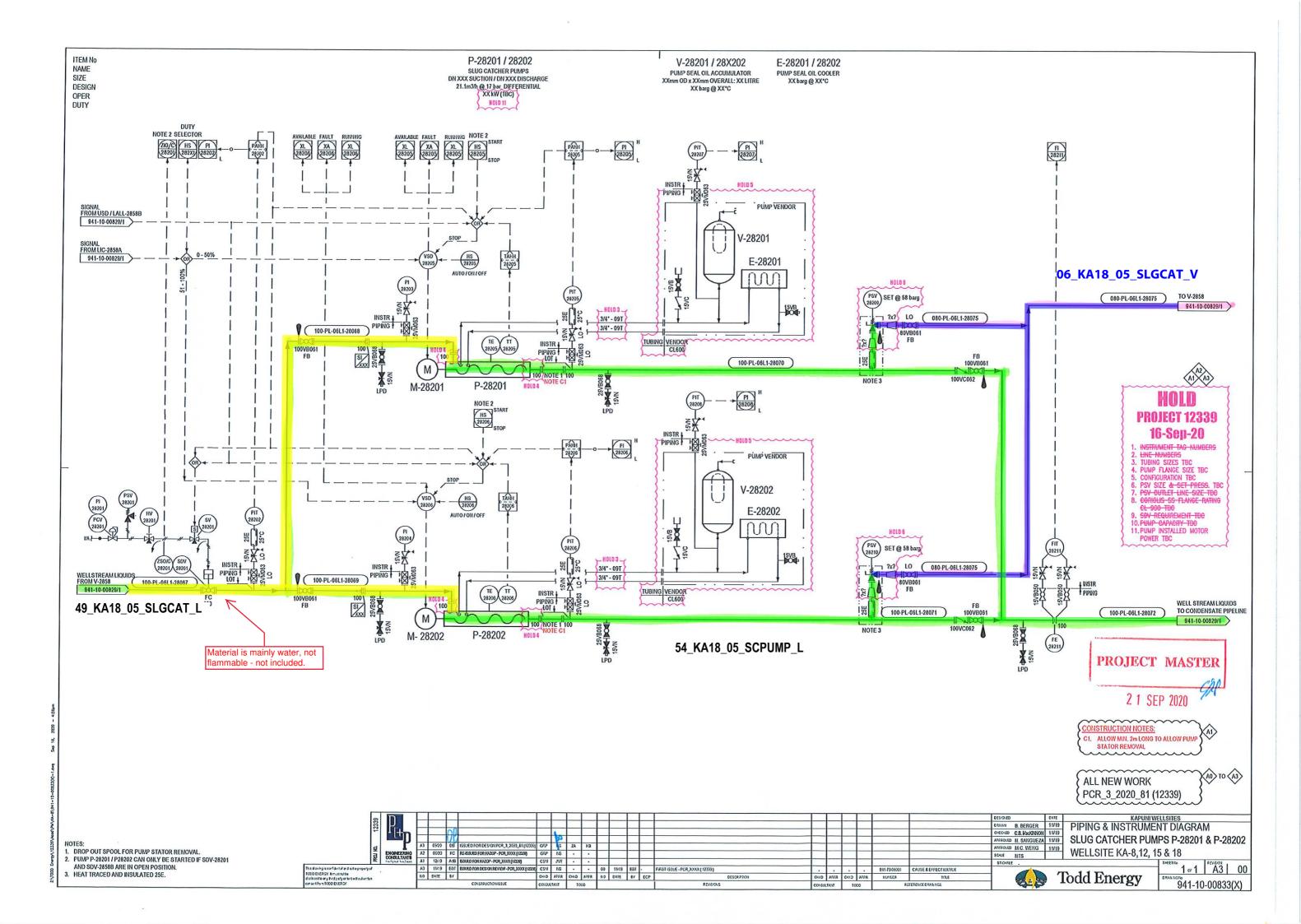

4. ALL TUBING IS 316SS C/W SWAGELOK FITTINGS.

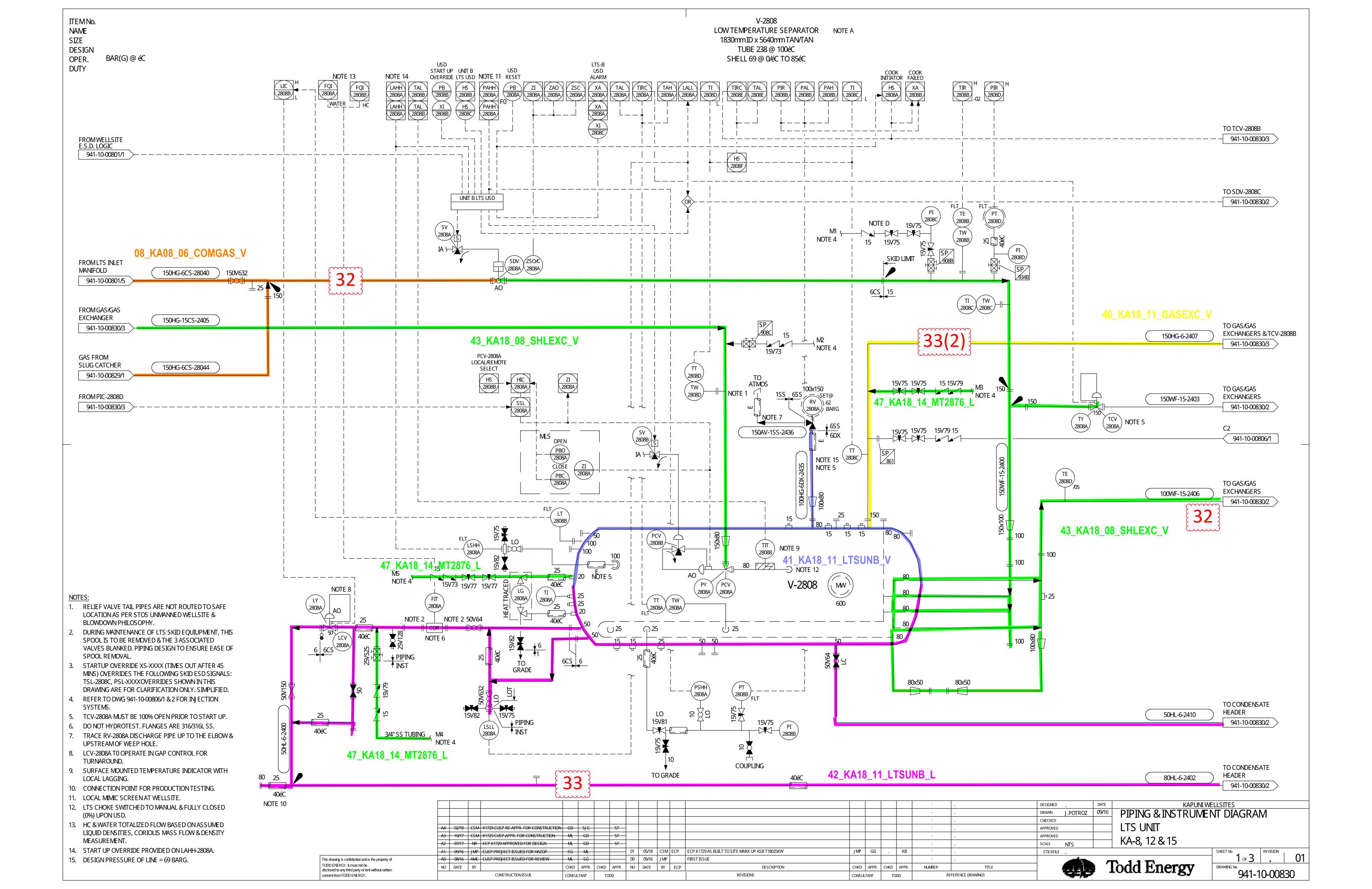
ST	'OS DWG. NO.:	941-10-00819	W01002	87	SHT	. NO.:	5 of 10				
05	ECP X0213	AS BUILT TO SITE MARK UP ASB 15217KV	V		08/15	BB	J MP/AB/ATH				
4	EW	r K521 as built to as b 6052kw			04/06	DW	VB/AvdE/RP				
3	FIELD A	5 BUILT, PER CUSTOMER COMMENTS		05	5/12/05	PLM	PLM				
2	AS E	UILT, PER CUSTOMER COMMENTS		05	5/07/01	PLM	PLM				
REV		DESCRIPTION		C	DATE	DRAWN BY	CHECKED BY				
EFX Compression											
4700 47 S	4700 47 Street SE Calgary AB Canada T2B 3R1 Canada Tel. +1.403.236.6800 Fax +1.403.279.0367										


www.enerflex.com

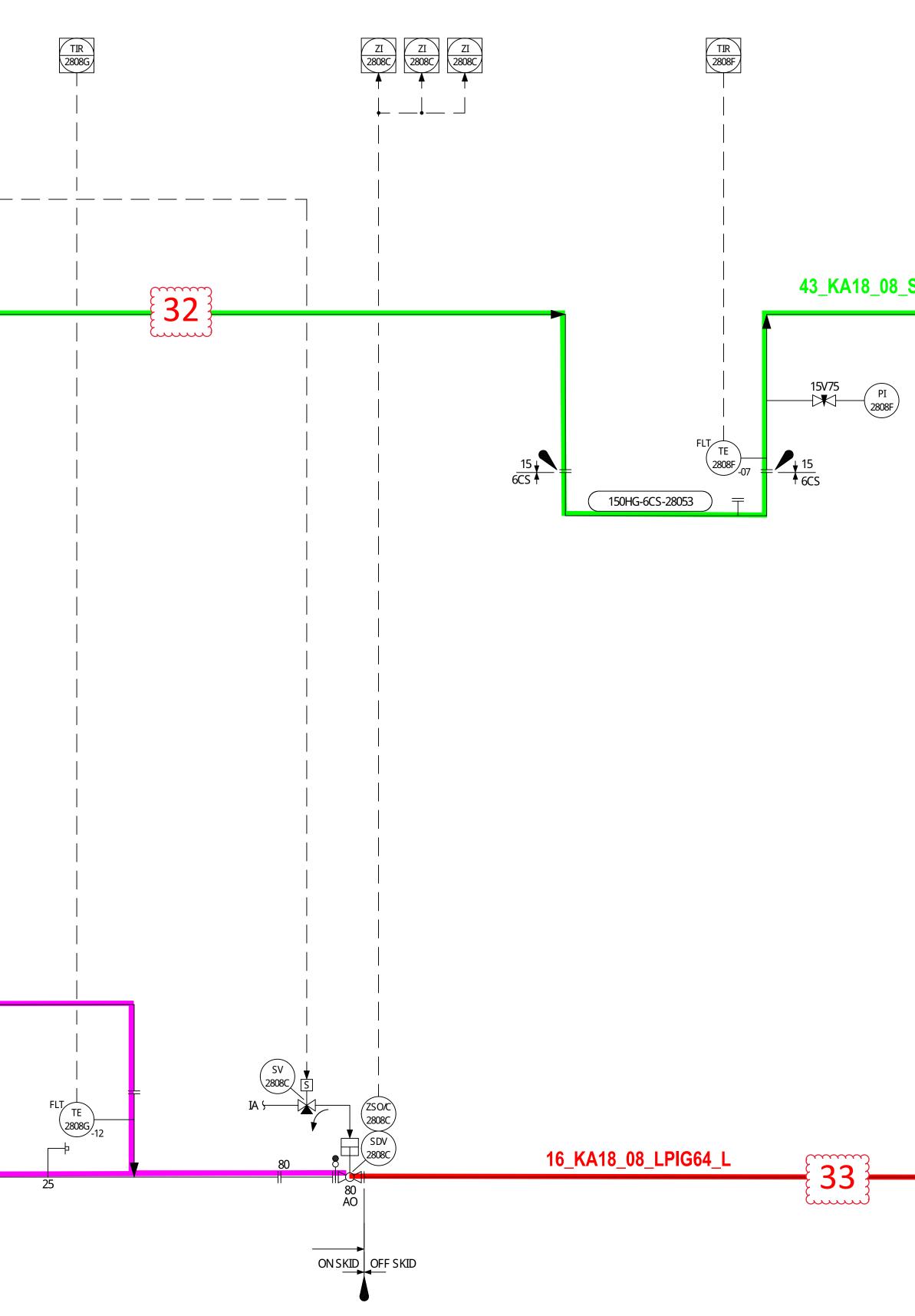

TITLE:

	WAUKESHA L5790GL													
FOR:	SHELL TODD OIL SERVICES LIMITED													
	TAG NO.: A-9201 (KA-8/15 WELL HEAD COMPRESSOR)													
CONSULT		FIELD WORLE	YNEWZ	EALANI	D	LSD: TARANAKI NEW ZEA	ALAND							
P.O.: 50	4568					J OB No.: 040725								
DRWN BY:	MGN	DESIGN BY:		DATE:		DWG. No.	OP#							
DATE: 04/10/20 CHKD BY: PLM DATE: 04/10/26 CF 04/07/26 20 20/														
SCALE: NTS APPVD BY: PLM DATE: SF-040725-22 22A														





		-	-		-		-	-									
RE-ISSUED AFC	JA	AvdE		кј е	-												
RE-ISSUED AFC		JA		КЈЕ	-												
APPROVED FOR CONSTRUCTION	WF	JA	•	КЈЕ	-												
RE-ISSUED AFD	WF	JA		КЈЕ	-												
APPROVED FOR DESIGN	WF	JA		КЈЕ	03	05/18	CSM	ECP	ECP K1729 AS BUILT TO SITE MARK UP ASB T18025KW	JMP	GD	•	KB				
					02	12/08	MH	ECP	ECP K1282 AS BUILT TO SITE MARK UP ASB 8214KK	VB	LS		AI				
PRE-APPR. FOR CONSTRUCTION	GD	SJG	•	SF	01	04/06	DW	K521	AS BUILT TO SITE MARK UP ASB 6052KW	VB	AvdE		RP				
PAPPR. FOR CONSTRUCTION	ML	GD	•	SF	0	06/04	TMA	K521	FIRST ISSUE	WF	JA	SF	NB	941-10-806/2	METHANOL INJ ECTION.		
	CHKD	APPR.	CHKD	APPR.	NO	DATE	BY	ECP	DESCRIPTION	CHKD	APPR.	CHKD	APPR.	NUMBER	ΤΠLE		
STRUCTION ISSUE	CONSUL	TANT	то	DD					REVISIONS	CONSULTANT TODD			DD	REFERENCE DRAWINGS			









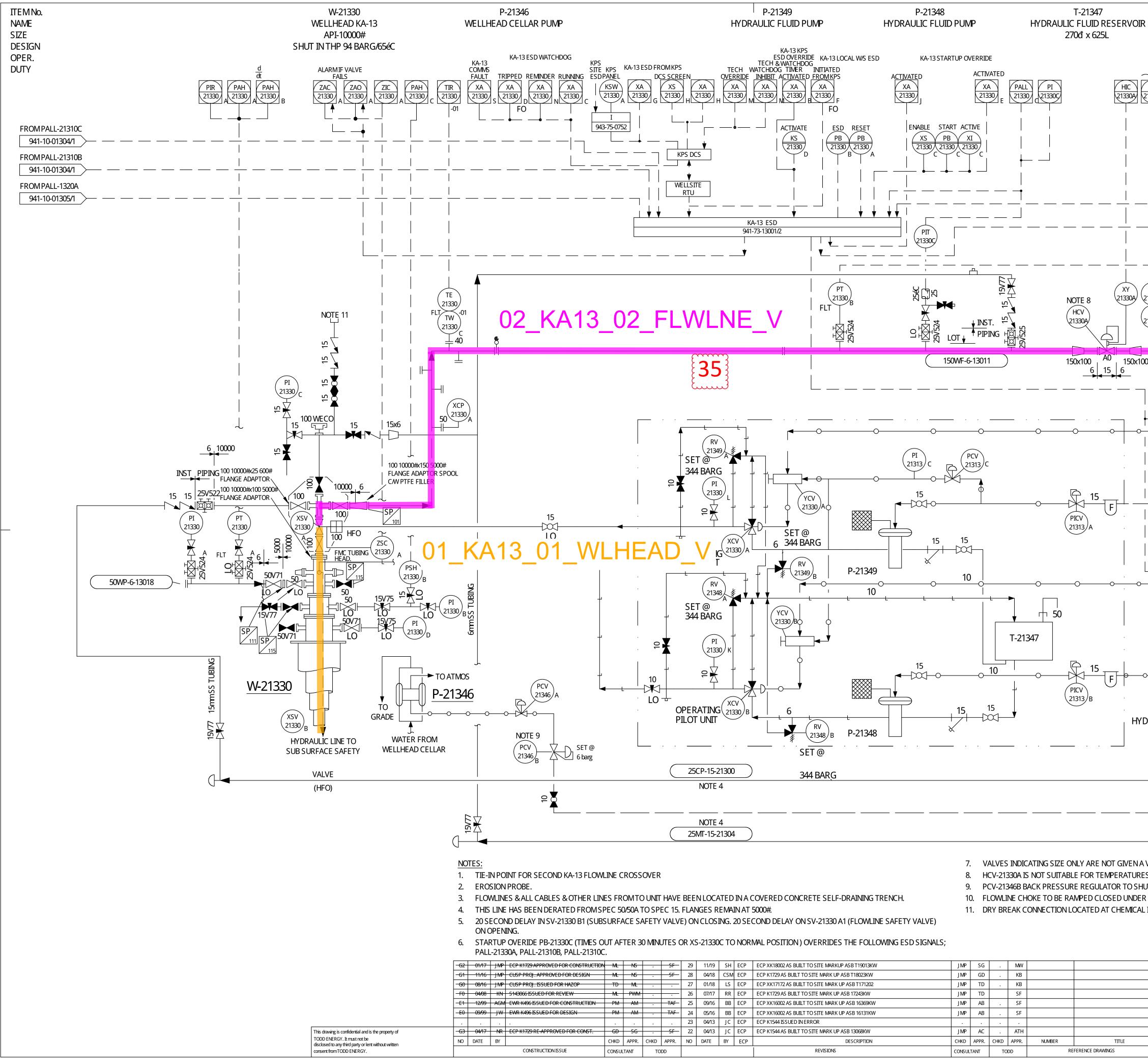



FROM LALL-2808A 941-10-00830/1			
FROMLTS V-2808 941-10-00830/1	150WF-15-2403 SR ) 100WF-15-2406 $\pm 50$	ſ	FLT TE 2808E -06
FROMLTS VESSEL V-2808 941-10-00830/1	50HL-6-2410	{33}	
V-2808	50HL-6-2410 42_KA18_11_LTSUNB_L		SOHL-6-2403
V-2808			DPT-9-TOS
V-2808 941-10-00830/1 FROMCOND. HEADER	42_KA18_11_LTSUNB_L		



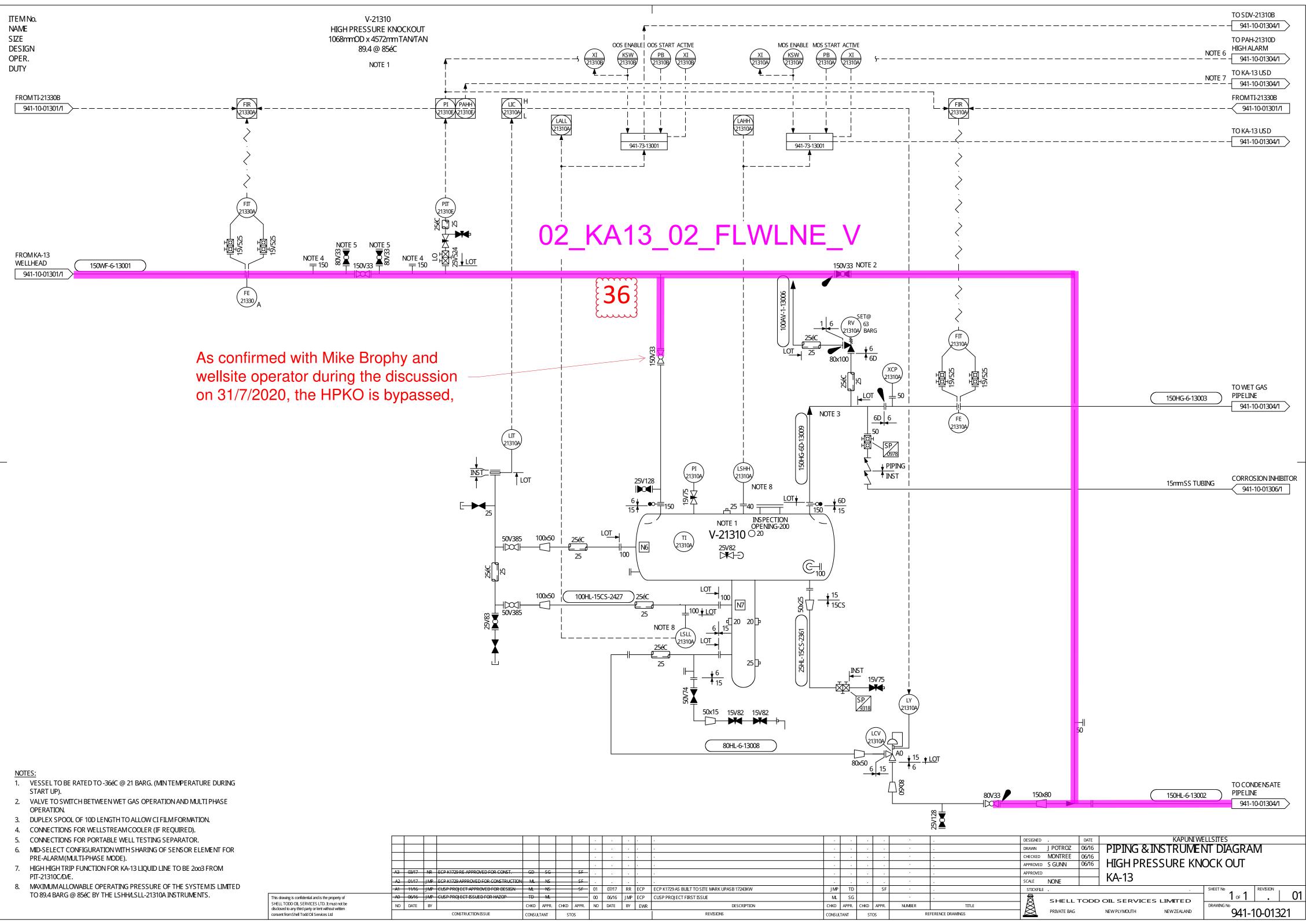
														•	•		
															•		
															•		
PRE-APPR. FOR CONSTRUCTION	GD	SJG		SF	-										•		
PAPPR. FOR CONSTRUCTION	ML	GD		SF	-									•	•		
APPROVED FOR DESIGN	ML	GD		SF										•	•		
ECT ISSUED FOR HAZOP	SG	ML			- 01	05/18	CSM	ECP	ECP K1729 AS BUILT TO SITE MARK UP ASB T18025KW	JMP	GD		KB		•		
ECT ISSUED FOR HAZOP	NS	ML			- 00	09/16	JMP		FIRST ISSUE						•		
	CHKD	APPR.	CHKD	APPR.	NO	DATE	BY	ECP	DESCRIPTION	CHKD	APPR.	CHKD	APPR.	NUMBER	TITLE		
STRUCTION ISSUE	UCTION ISSUE CONSULTANT TODD							REVISIONS	CONSULTANT TODD			DD	REFERENCE DRAWINGS				

SHLEXC_	V		$\square$	150HG-15-2403		GAS TO HEAT EXCHANGER TUBE SIDE	
						941-10-00830/3	
	100x80			100HL-6-2800	$\supset$		
						941-10-00804/1	
DESIG	•	DATE 09/16					
CHEC	KED OVED		LTS L	JNIT	KUIV <b>I</b> Eľ	NT DIAGRAM	
APPRO SCALE STIC				12 & 15		SHEET NO 2 OF 3	01
		T	odd	Energ	y	Z □F 3   .   DRAWING NO 941-10-00830	

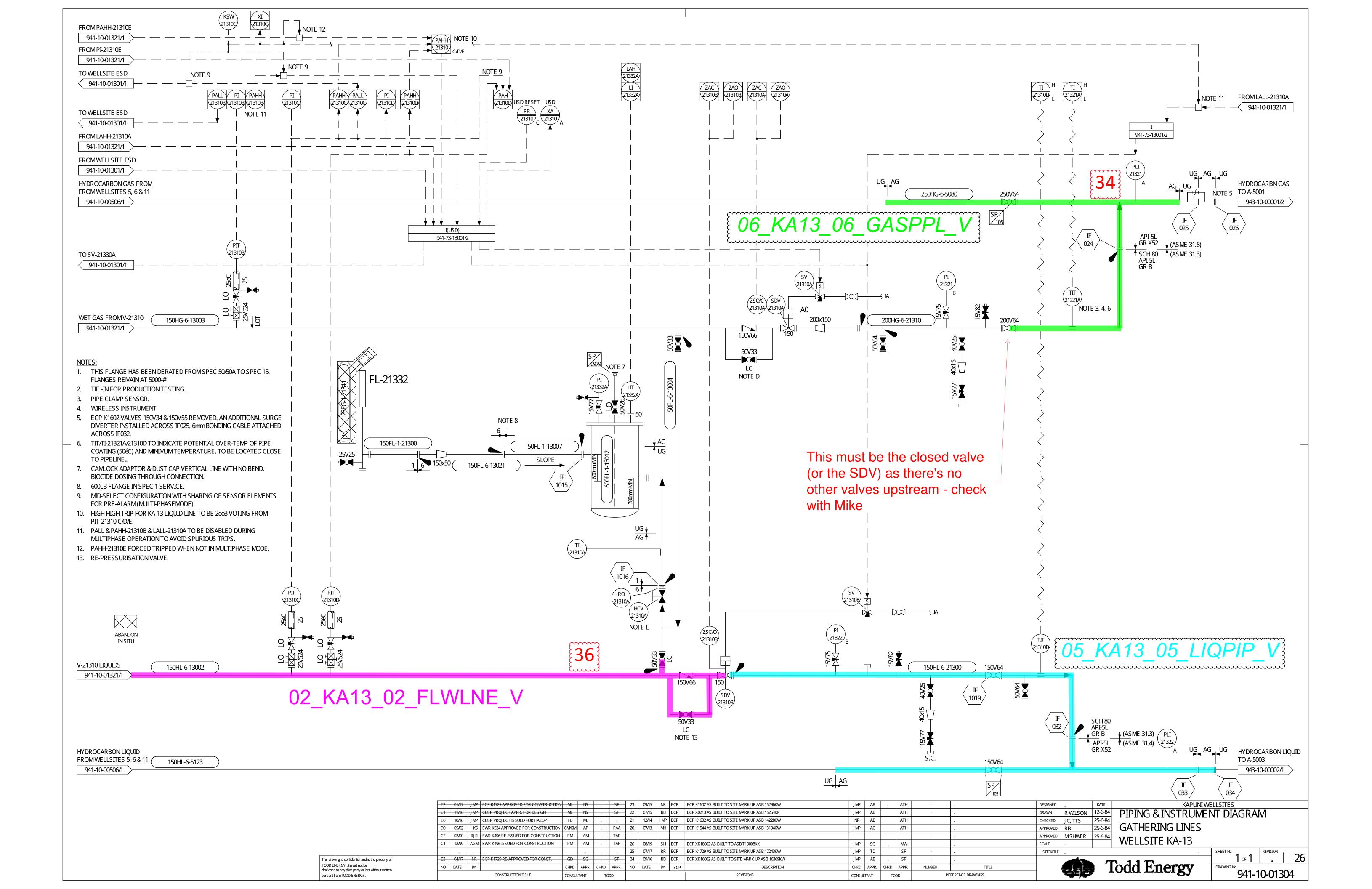


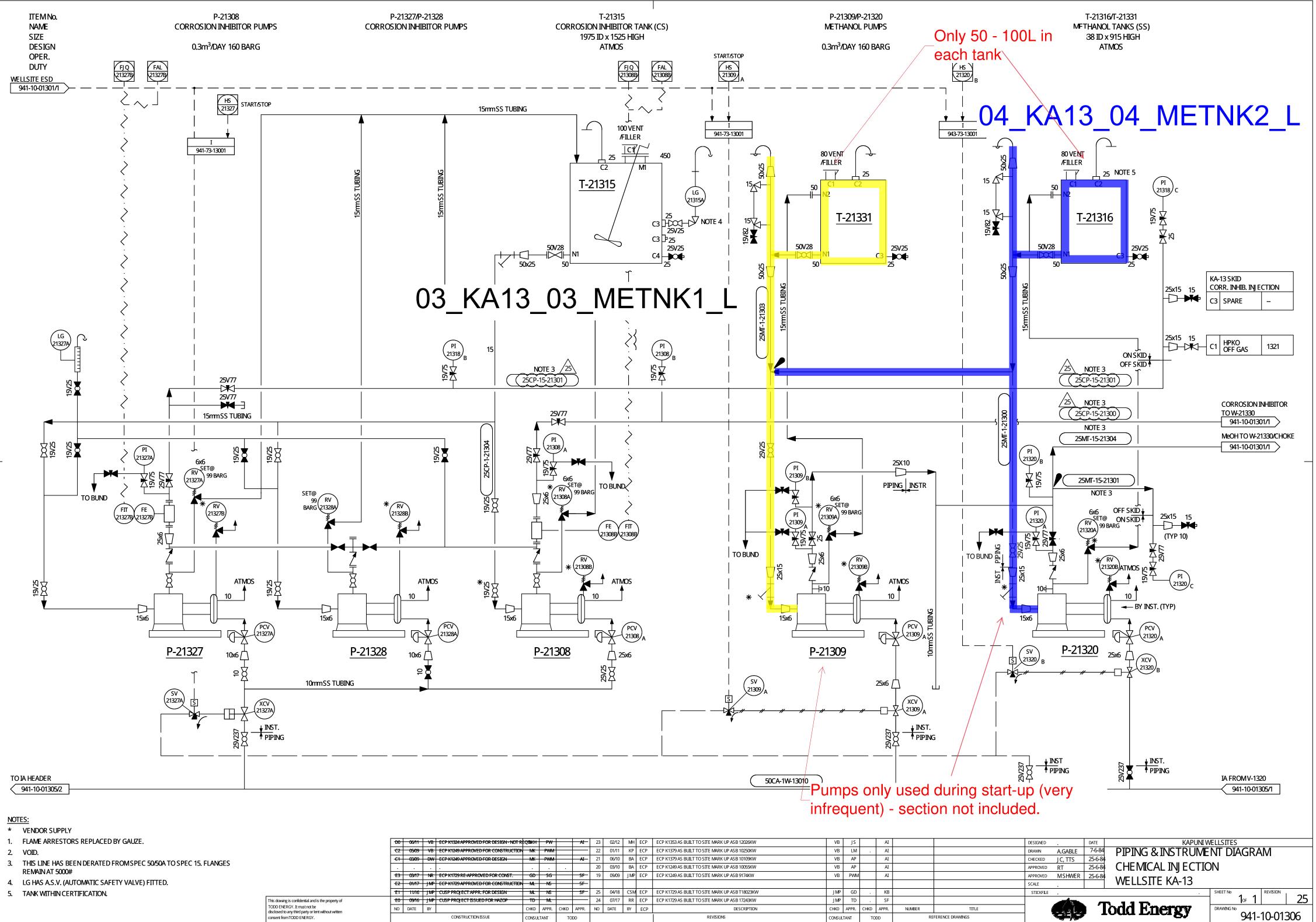

														•	•
														•	•
														•	•
P RE-APPR. FOR CONSTRUCTION	GD	SJG		SF	-									•	
P APPR. FOR CONSTRUCTION	ML	GD		SF	-									•	
APPROVED FOR DESIGN	ML	GD		SF	02	08/19	BB		XK18002 AS BUILT TO SITE MARK UP ASB T19010KW	JMP	AB		MW	•	•
JECT ISSUED FOR HAZOP	SG	ML			- 01	05/18	CSM	ECP	ECP K1729 AS BUILT TO SITE MARK UP ASB T18025KW	JMP	GD	•	KB	•	•
JECT ISSUED FOR HAZOP	NS	ML			- 00	09/16	JMP		FIRST ISSUE					•	•
	CHKD	APPR.	CHKD	APPR.	NO	DATE	BY	ECP	DESCRIPTION	CHKD	APPR.	CHKD	APPR.	NUMBER	TΠLE
ISTRUCTION ISSUE	CONSUL	TANT	TO	DD					REVISIONS	CONSUL	TANT	TO	DD	RE	Ference Drawings






Appendix 7. P&ID Sectionalisation for KA-13





7. VALVES INDICATING SIZE ONLY ARE NOT GIVEN A

TIR     TAL     PAL     PIR       1330B/21330B/     21330     B     21330	
	FIR-21310A 
FROM PSL-21313A FUSIBLE PLUG LOW PRE	SSURE 941-10-01305/3 KA-13 SHUTDOWN 941-10-01304/1 TO METHANOL PUMPS
	— — 941-10-01306/1 FROM KA-13 USD — 941-10-01304/1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	WELLSTREAM FLUID TO V-21310 941-10-01321/1
$\begin{array}{c} SV \\ 21330 \\ F \\ VENT \\ \end{array}$	INSTRUMENT AIR SUPPLY B 941-10-1305/2
	INSTRUMENT AIR SUPPLY A 941-10-1305/2
RAULIC CONTROL UNIT (AXELSON)	
CORROSION INHIBITOR FROM P-21308	941-10-01306/1 INSTRUMENT AIR SUPPLY 941-10-1305/2
METHANOL FROM P-21309 / NUMBER AS THEY DO NOT CONFORM WITH SPEC 5.1 5 BELOW -29éC WHICH MAY OCCUR ON LP OPERATING MODE STARTUP. TDOWN P-21346 BELOW 6 BARG AIR PRESSURE. USD, ESD, KPS-ESD, OR ALL KPS INLET VAVES CLOSED. INJ ECTION SKID.	941-10-01306/1
DESIGNEDDATEKAPUNI WEDRAWNVG11-6-84PIPING & INSTRUMENCHECKEDJ C, TTS25-6-84WELLHEADAPPROVEDPL25-6-84WELLSITE KA-13SCALENONEVELLSITE KA-13	
Todd Energy	1 of 2 . 29 DRAWING № 941-10-01301



									•	•	•	•	•
	-A3	-03/17	NR	ECP K1729 RE-APPROVED FOR CONST.	GD	SG		<u>SF</u>					
	<u>A2</u>	01/17	JMP	ECP K1729 APPROVED FOR CONSTRUCTION	ML	NS		<u>SF</u>					
	<del>- A1</del>	11/16	JM₽	CUSP PROJECT APPROVED FOR DESIGN	ML	NS		SF	01	07/17	RR	ECP	ECP K1729 AS BU
This drawing is confidential and is the property of	- 40	-06/16	JMP	CUSP PROJECT ISSUED FOR HAZOP	TD	ML			00	06/16	JMP	ECP	CUSP PROJECT
SHELL TODD OIL SERVICES LTD. It must not be disclosed to any third party or lent without written	NO	DATE	BY		CHKD	APPR.	CHKD	APPR.	NO	DATE	BY	EWR	
consent from Shell Todd Oil Services Ltd				CONSTRUCTION ISSUE	CONSUL	TANT	ST	OS					





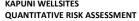
NE HAS BEEN DERATED FROM SPEC 50/50A TO SPEC 15, FLANGES			•	•						20	03/10	BA	ECP	ECP K1249 AS
NAT 5000#		<del>-E3</del>	03/17	NR	ECP K1729 RE-APPROVED FOR CONST.	GD	SG		SF-	19	09/09	JMP	ECP	ECP K1249 AS
A.S.V. (AUTOMATIC SAFETY VALVE) FITTED.		<del>-E2</del>	01/17	JMP	ECP K1729 APPROVED FOR CONSTRUCTION	ML	NS		SF					
ATHIN CERTIFICATION.		E1	11/16	jMP	CUSP PROJECT APPR. FOR DESIGN	ML	NS		SF	25	04/18	CSM	ECP	ECP K1729 AS
	This drawing is confidential and is the property of	<del>E0</del>	09/16	JMP	CUSP PROJECT ISSUED FOR HAZOP	TD	ML			24	07/17	RR	ECP	ECP K1729 AS
	TODD ENERGY. It must not be disclosed to any third party or lent without written	NO	DATE	BY		CHKD	APPR.	CHKD	APPR.	NO	DATE	BY	ECP	
	consent from TODD ENERGY.				CONSTRUCTION ISSUE	CONSUL	TANT	то	DD					





Appendix 8. Full Wellsites Heat and Material Balance

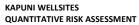





KAPUNI WELLSITES QUANTITATIVE RISK ASSESSMENT

	КА-02				КА-05			
Stream Number	1	2	<b>3</b> Note 1	4	5	6	7	8
Name / Description	KA- 02_Wellfluid_to_ KA- 02_Wellstream_C ooler	KA- 02_Wellstream_C ooler_to_LTS_02	LTS- 02_Liquid_to_Liq uid_Manifold	LTS-02_Gas_to_E- 020XA	E- 020XA_to_Gas_M anifold	KA- 05_Wellfluid_to_ KA-05_Choke	KA- 05_Choke_to_KA- 05_KA- 06/17_Combined	KA-05_KA- 06/17_Combined
Mole Fraction								
WATER	0.2469	0.2469	0.8952	0.0004	0.0004	0.2072	0.2072	0.2858
CARBON DIOXIDE	0.3308	0.3308	0.0234	0.4476	0.4476	0.3632	0.3632	0.3163
METHANE	0.3311	0.3311	0.0052	0.4550	0.4550	0.3364	0.3364	0.2897
ETHANE	0.0398	0.0398	0.0041	0.0533	0.0533	0.0424	0.0424	0.0373
PROPANE	0.0197	0.0197	0.0065	0.0248	0.0248	0.0243	0.0243	0.0225
n-BUTANE	0.0101	0.0101	0.0081	0.0110	0.0110	0.0129	0.0129	0.0132
n-PENTANE	0.0027	0.0027	0.0046	0.0019	0.0019	0.0042	0.0042	0.0051
METHANOL	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
n-HEPTANE (C7)	0.0175	0.0175	0.0466	0.0059	0.0059	0.0066	0.0066	0.0210
n-DECANE (C10)	0.0015	0.0015	0.0053	0.0000	0.0000	0.0026	0.0026	0.0091
n-EICOSANE (C20)	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
TOTAL	1.0001	1.0001	0.9990	0.9999	0.9999	0.9998	0.9998	1.0000

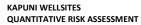
Note 1: Stream 3 is constituting of high water content (% water cut is >125%) hence is not considered as flammable.








	KA-6/17							
Stream Number	9	10	11	12	13	14	34	
Name / Description	KA- 06_Wellfluid_to_KA- 06_KA-17_Combined	KA- 06/17_Combined_to_E -2651	E-2651_to_V-2654	V-2654_Liquid_to_KA- 05_KA- 06/17_Combined	V- 2654_Gas_to_Gas_Ma nifold	KA- 17_Wellfluid_to_KA- 06_KA-17_Combined	KA-05_KA-06/17_KA- 13_Combined	
Mole Fraction								
WATER	0.0218	0.0609	0.0609	0.7540	0.0016	0.1241	0.2168	
CARBON DIOXIDE	0.4443	0.4370	0.4370	0.0370	0.4712	0.4253	0.3497	
METHANE	0.4232	0.3949	0.3949	0.0112	0.4277	0.3491	0.3245	
ETHANE	0.0529	0.0493	0.0493	0.0071	0.0529	0.0434	0.0414	
PROPANE	0.0270	0.0253	0.0253	0.0119	0.0265	0.0225	0.0237	
n-BUTANE	0.0125	0.0118	0.0118	0.0147	0.0115	0.0107	0.0130	
n-PENTANE	0.0035	0.0033	0.0033	0.0106	0.0027	0.0029	0.0047	
METHANOL	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
n-HEPTANE (C7)	0.0116	0.0137	0.0137	0.1066	0.0060	0.0174	0.0187	
n-DECANE (C10)	0.0032	0.0037	0.0037	0.0469	0.0001	0.0046	0.0076	
n-EICOSANE (C20)	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
TOTAL	1.0000	0.9999	0.9999	1.0000	1.0002	1.0000	1.0000	








	KA-19							
	15	16	17	18	19	20		
Name	KA-19_Wellfluid_to_KA- 19_Choke	KA-19_Choke-to_E-2153	E-2153_to_V-2154	V- 2154_Liquid_to_Liquid_M anifold	V- 2154_Gas_to_Wet_Gas_N etwork	Wet_Gas_Network_to_W et_Gas_KA-18_Combined		
Mole Fraction								
WATER	0.0338	0.0338	0.0338	0.6021	0.0016	0.0014		
CARBON DIOXIDE	0.4380	0.4380	0.4380	0.0581	0.4596	0.4630		
METHANE	0.4130	0.4130	0.4130	0.0188	0.4354	0.4352		
ETHANE	0.0521	0.0521	0.0521	0.0122	0.0543	0.0535		
PROPANE	0.0271	0.0271	0.0271	0.0205	0.0275	0.0265		
n-BUTANE	0.0128	0.0128	0.0128	0.0254	0.0122	0.0117		
n-PENTANE	0.0038	0.0038	0.0038	0.0193	0.0030	0.0027		
METHANOL	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		
n-HEPTANE (C7)	0.0144	0.0144	0.0144	0.1542	0.0065	0.0060		
n-DECANE (C10)	0.0050	0.0050	0.0050	0.0892	0.0000	0.0000		
n-EICOSANE (C20)	0.0000	0.0000	0.0000	0.0001	0.0000	0.0000		
TOTAL	1.0000	1.0000	1.0000	0.9999	1.0001	1.0000		







		KA-8/18									
Stream Number	21	22	23	24 Note 1	25 Note 1	26 Note 1	27				
Name / Description	KA- 18_Wellfluid_to_KA- 18_Choke	KA- 18_Choke_to_Wet_G as_KA-18_Combined	Wet_Gas_KA- 18_Combined_to_V- 2858	V-2858_Liquid_ to_LCV-2858A	LCV-2858A_to_KA-8_ KA-18_Liquid_ Combined	KA-08_KA- 18_Liquid_to_Liquid_ Manifold	V-2858_Gas_to_KA- 08_KA- 18_Gas_Combined				
Mole Fraction											
WATER	0.1798	0.1798	0.0421	0.9064	0.9064	0.8556	0.0015				
CARBON DIOXIDE	0.3213	0.3213	0.4306	0.0150	0.0150	0.0267	0.4502				
METHANE	0.3914	0.3914	0.4252	0.0039	0.0039	0.0083	0.4450				
ETHANE	0.0455	0.0455	0.0517	0.0026	0.0026	0.0052	0.0540				
PROPANE	0.0257	0.0257	0.0263	0.0045	0.0045	0.0087	0.0274				
n-BUTANE	0.0131	0.0131	0.0120	0.0058	0.0058	0.0107	0.0123				
n-PENTANE	0.0038	0.0038	0.0029	0.0043	0.0043	0.0075	0.0028				
METHANOL	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000				
n-HEPTANE (C7)	0.0172	0.0172	0.0086	0.0461	0.0461	0.0615	0.0069				
n-DECANE (C10)	0.0022	0.0022	0.0006	0.0116	0.0116	0.0155	0.0000				
n-EICOSANE (C20)	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000				
TOTAL	1.0000	1.0000	1.0000	1.0002	1.0002	0.9997	1.0001				

Note 1: Streams 24, 25 and 26 are constituting of high water content (% water cut are >125%) hence are not considered as flammable.



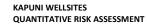




			KA-8/18	;			
Stream Number	28	29	<b>30</b> Note 1	31	32	33	33(2)
Name / Description	KA- 08_WellFluid_to_KA- 08_KA- 18_Gas_Combined	KA-08_KA- 18_Gas_Combined_t o_V-9010	V- 9010_Liquid_to_KA- 8_KA- 18_Liquid_Combined	V-9010_Gas_to_A- 9101	A-9101_to_LTS-8	LTS-8_Liquid_to_KA- 8_KA- 18_Liquid_Combined	LTS- 8_Gas_to_Dry_Gas_P ipeline
Mole Fraction							
WATER	0.1279	0.0234	0.8768	0.0016	0.0016	0.2281	0.0006
CARBON DIOXIDE	0.3445	0.4318	0.0185	0.4425	0.4425	0.1913	0.4435
METHANE	0.4171	0.4402	0.0055	0.4513	0.4513	0.0696	0.4528
ETHANE	0.0483	0.0530	0.0035	0.0543	0.0543	0.0422	0.0543
PROPANE	0.0275	0.0274	0.0061	0.0279	0.0279	0.0664	0.0278
n-BUTANE	0.0142	0.0126	0.0078	0.0127	0.0127	0.0767	0.0125
n-PENTANE	0.0041	0.0031	0.0059	0.0030	0.0030	0.0491	0.0028
METHANOL	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
n-HEPTANE (C7)	0.0129	0.0079	0.0534	0.0068	0.0068	0.2624	0.0057
n-DECANE (C10)	0.0034	0.0006	0.0225	0.0001	0.0001	0.0138	0.0000
n-EICOSANE (C20)	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
TOTAL	0.9999	1.0000	1.0000	1.0002	1.0002	0.9996	1.0000

Note 1: Stream 30 is constituting of high water content (% water cut is >125%) hence is not considered as flammable.






KAPUNI WELLSITES QUANTITATIVE RISK ASSESSMENT

			KA-8/18				
Stream Number	35	36	37 Note 1	38 Note 1	39	40	41
Name / Description	E-2800_Tube_Side _to_LTS-8_Coils	LTS-8_Coils_Out_ to_V-2803	V-2803_Liquid_ to_LCV-2803A/B	LCV-2803A/B_ to_V- 2805	V-2803_Gas_to_E- 2801/2_Tube_Side	E-2801/2_Tube_ Side_to_PCV- 2804A/E	PCV-2804A/E_to_E- 2801/2_Gas_V- 2805_Gas_Mix
Mole Fraction							
WATER	0.0016	0.0016	0.9925	0.9925	0.0016	0.0016	0.0016
CARBON DIOXIDE	0.4424	0.4424	0.0075	0.0075	0.4424	0.4424	0.4424
METHANE	0.4513	0.4513	0.0000	0.0000	0.4513	0.4513	0.4513
ETHANE	0.0543	0.0543	0.0000	0.0000	0.0543	0.0543	0.0543
PROPANE	0.0279	0.0279	0.0000	0.0000	0.0279	0.0279	0.0279
n-BUTANE	0.0127	0.0127	0.0000	0.0000	0.0127	0.0127	0.0127
n-PENTANE	0.0030	0.0030	0.0000	0.0000	0.0030	0.0030	0.0030
METHANOL	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
n-HEPTANE (C7)	0.0067	0.0067	0.0000	0.0000	0.0067	0.0067	0.0067
n-DECANE (C10)	0.0001	0.0001	0.0000	0.0000	0.0001	0.0001	0.0001
n-EICOSANE (C20)	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
TOTAL	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000

Note 1: Streams 37 and 38 are constituting of water and carbon dioxide only hence are not flammable.







	KA-8/18										
Stream Number	42	43	43         44 Note 1         45 Note 1         46         47		48	49					
Name / Description	V-2805_Gas_to_E- 2801/2_Gas_V- 2805_Gas_Mix	E-2801/2_Gas_V- 2805_Gas_Mix_to _LTS-8	V-2805_Liquid_ to_LCV-2805	LCV-2805_to_V- 2805_Liquid_LTS- 8_Liquid_Mix	LTS-8_Liquid_ to_LCV-2804A	LCV-2804A_to_V- 2805_Liquid_LTS- 8_Liquid_Mix	V-2805_Liquid_ LTS-8_Liquid_Mix _to_E- 2800_Shell_Side	LTS-8_Gas_to_ E-2801/2_ Shell_Side			
Mole Fraction											
WATER	0.0020	0.0016	0.9925	0.9925	0.2333	0.2333	0.2333	0.0007			
CARBON DIOXIDE	0.5632	0.4424	0.0075	0.0075	0.1922	0.1922	0.1922	0.4434			
METHANE	0.4312	0.4513	0.0000	0.0000	0.0718	0.0718	0.0718	0.4528			
ETHANE	0.0036	0.0543	0.0000	0.0000	0.0420	0.0420	0.0420	0.0543			
PROPANE	0.0000	0.0279	0.0000	0.0000	0.0655	0.0655	0.0655	0.0278			
n-BUTANE	0.0000	0.0127	0.0000	0.0000	0.0754	0.0754	0.0754	0.0125			
n-PENTANE	0.0000	0.0030	0.0000	0.0000	0.0481	0.0481	0.0481	0.0028			
METHANOL	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000			
n-HEPTANE (C7)	0.0000	0.0067	0.0000	0.0000	0.2576	0.2576	0.2576	0.0057			
n-DECANE (C10)	0.0000	0.0001	0.0000	0.0000	0.0140	0.0140	0.0140	0.0000			
n-EICOSANE (C20)	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000			
TOTAL	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000			

Note 1: Streams 44 and 45 are constituting of water and carbon dioxide only hence are not flammable.





	КА	-13			KA-4/14		
Stream Number Note 1	35	36	37	38	39	40	41
Name / Description	KA- 13_Wellfluid_to_KA- 13_Choke	KA-13_Choke _to_Condensate_ Pipeline	KA- 4_Wellfluid_to_KA- 4_Choke	KA-4_Choke _to_KA4/14_Combin _ed	KA-4/14_Combined _to_Liquid_Manifold	KA- 14_Wellfluid_to_KA- 14_Choke	KA- 14_Choke_to_KA- 4/14_Combined
Mole Fraction							
WATER	0.0267	0.0267	0.0437	0.0437	0.0352	0.0299	0.0299
CARBON DIOXIDE	0.4414	0.4414	0.4224	0.4224	0.4278	0.4312	0.4312
METHANE	0.4204	0.4204	0.4102	0.4102	0.4158	0.4193	0.4193
ETHANE	0.0525	0.0525	0.0511	0.0511	0.0517	0.0521	0.0521
PROPANE	0.0269	0.0269	0.0290	0.0290	0.0292	0.0293	0.0293
n-BUTANE	0.0125	0.0125	0.0153	0.0153	0.0152	0.0151	0.0151
n-PENTANE	0.0036	0.0036	0.0048	0.0048	0.0046	0.0045	0.0045
METHANOL	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
n-HEPTANE (C7)	0.0123	0.0123	0.0196	0.0196	0.0174	0.0161	0.0161
n-DECANE (C10)	0.0036	0.0036	0.0038	0.0038	0.0031	0.0026	0.0026
n-EICOSANE (C20)	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
TOTAL	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000

Note 1: Stream numbers of 35 to 41 are also available for KA-8/18 wellsite, this is due to additional streams were added to the initial HMB and hence created some repeats. However, the compositions are different for the same numbers at the different wellsites.





**TODD ENERGY LTD** 

# Kapuni Wellsites QRA Assumptions Register

610114-RPT-R0001 July 2022

Worley New Zealand Ltd 25 Gill Street, New Plymouth 4310 PO Box 705, New Plymouth 4340

Telephone +64-6-759 6300 Facsimile +64-6-759 6301

www.worley.com

Rev	Description	Originator	Reviewer	Worley Approver	Date	Client Approval	Date
A	Issued for Review/Comment	Y Lee	E Gloy	Y Lee	05/2020		
0	Approved for Use	Y Lee	L Ong	Y Lee	08/2020		
1	Re-Approved for Use	Y Lee	O Kilian	Y Lee	07/2022		





### TABLE OF CONTENTS

1.	ABBREVIATIONS	1
2.	INTRODUCTION	2
2.1	Objective	2
2.2	Scope	2
2.3	Facility Description	4
3.	MODELLING INPUTS AND ASSUMPTIONS	8
3.1	Assessment Tool	
3.2	Definition of Parts Count Sections	8
3.3	Failure Frequency Data and Hole Size Distributions	9
3.4	Blowout Events	
3.5	Ignition Probabilities	
3.6	Material Composition	
3.7	Release Scenarios	
3.8	Congested Area	
3.9	Atmospheric Conditions for Modelling	
3.10	Fatality Criteria	
3.11	Risk Criteria	
4.	REFERENCES	22





### 1. ABBREVIATIONS

API	American Petroleum Institute
AWS	Automatic Weather Station
BLEVE	Boiling Liquid Expanding Vapour Explosion
BOP	Blowout Preventer
DNV GL	Det Norske Veritas Germanischer Lloyd
EI	Energy Institute
ESDV	Emergency Shutdown Valve
FBR	Full Bore Rupture
GOR	Gas Oil Ratio
HCRD	Hydrocarbon Release Database
HIPAP4	NSW Hazardous Industry Planning Advisory Paper No. 4
НМВ	Heat and Material Balance
НРКО	High Pressure Knock Out
IOGP	International Association of Oil and Gas Producers
IRPA	Individual Risk Per Annum
KPS	Kapuni Production Station
LFL	Lower Flammable Limit
LPG	Liquefied Petroleum Gas
LSIR	Location Specific Individual Risk
LTS	Low Temperature Separator
PFD	Process Flow Diagram
PFP	Passive Fire Protection
P&ID	Piping & Instrumentation Diagram
PLL	Potential Loss of Life
QRA	Quantitative Risk Assessment
RADD	Risk Assessment Data Directory
STDC	South Taranaki District Council
UK HSE	United Kingdom Health and Safety Executive
VCE	Vapour Cloud Explosion
WSO	Water Shut-off





### 2. INTRODUCTION

This document sets out the assumptions to be used for the Todd Energy (Todd) Kapuni wellsites Quantitative Risk Assessment (QRA).

### 2.1 Objective

The objective of the QRA is to develop risk contours to meet the risk assessment requirements of the South Taranaki District Council (STDC) District Plan, Section 11: Hazardous Substances.

### 2.2 Scope

The scopes include:

- 1) Conduct risk assessment for seven (7) Kapuni wellsites with 17 wells; and
- 2) Update the existing KA-4/14 and KA-13 wellsites QRA [Ref. 1] and hence supersedes the results from the QRA.

The final report will be a combined QRA report for all nine (9) Kapuni wellsites with 20 wells.

Currently, seven (7) wellsites are producing, KA-3 is out of service and KA-9 is designed for water disposal only. The wellsite details are summarised in Table 2-1. Only producing wells will be considered in the QRA.

Wellsite	Number of wells	Producing	Scheduled for Abandon- ment Note 1	Suspended Note 2	Shut in Note 3	Observation / water Note 4	Notes
KA-1, KA-7, KA-19 and KA-20	4	1			1 (KA-7)	2 (KA-1 and KA-20)	
KA-2	1	1					
КА-3	1			1			
KA-4 and KA-14	2	2					KA-14 is only operating once (for 24 hours) every 10 days [Ref. 20].
KA-5 and KA-10	2	1				1 (KA-10)	
KA-6, KA-11 and KA- 17	3	2		1 (KA-11)			
KA-8, KA-12, KA-15 and KA-18	4	2	1 (KA-12)		1 (KA-15)		
КА-9	2					2	A new well, KW03, is drilled in May 2021 for further water injection purposes.

Table 2-1: Kapuni Wellsites





Wellsite	Number of wells	Producing	Scheduled for Abandon- ment Note 1	Suspended Note 2	Shut in Note 3	Observation / water Note 4	Notes
KA-13	1	1					KA-13 is only operating in 1 out of every 3 months.
Total	20	10	1	2	2	5	

Notes:

- 1. Wells that are scheduled for abandonment are plugged with abandonment plans underway.
- 2. Suspended wells are plugged and major intervention is required to bring the well back to service.
- 3. Shut in wells are isolated but could be brought back into service. Note that KA-7 and KA-15 were considered as producing well in the Kapuni Safety Case [Ref. 2], however, the wells are currently shutin and hence will not be included in the risk assessment [Ref. 3 and Ref. 4].
- 4. Water wells are for water injection only and will not be used for hydrocarbon / producing. Observation wells are only for monitoring reservoir conditions and informing development of reserves estimates. They are designed for instrumentation only and cannot inject or produce.

There is no plan to bring the non-producing wells back online in the future. In the unlikely event that this changes, the QRA will be updated to verify any impact on the risk contours. Engagement with STDC will be completed as part of this process and a new resource consent will be required.

### 2.2.1 Exclusions

The following will be excluded from the QRA scope:

- Risk from the gathering pipelines to Kapuni Production Station (KPS). The scope for each wellsite will include up to the pipeline isolation valves (if available) or when the pipelines go underground. Pipelines passing through the wellsites (e.g., at KA-4/14 and KA-5) are not considered in the base case. The pipeline sections will be assessed in the sensitivity case. Note that the pipeline (P/L) to PECPR on the P&ID will be used in some sections to identify the pipeline boundary;
- Risk other than hydrocarbon / process risk (e.g., transportation risk, seismic risk and volcanic risks);
- Decommissioned and/or mothballed equipment;
- Utilities such as produced water and instrument air as they do not contain any hydrocarbon inventory;
- Individual risk calculations, including Individual Risk Per Annum (IRPA) and Potential Loss of Life (PLL) as the wellsites are normally unmanned;
- Societal risk (F-N curve) as the wellsites are located as remote area with low populations;
- Corrosion Inhibitors present at the wellsites as they are not flammable;
- Methanol injecting pumps as they are only used during start-up (except for KA-8/12/15/18 wellsite where methanol dosing is required throughout the year). Note that methanol tanks are always full and connected to the methanol pumps, with the pumps turn off when methanol is not being injected [Ref. 19], hence the methanol tanks and tubing to the methanol pumps will be included.
- Toxic effect of carbon dioxide.





# 2.3 Facility Description

Kapuni is an onshore gas and condensate field located in South Taranaki, approximately 50 km south of New Plymouth. 20 Kapuni wells are located on nine (9) separate wellsites in the area surrounding the Kapuni Production Station (KPS). The production wellsite process is a simple separation of gas and liquids involving the direction of wellstream gas and liquids to a low temperature separator (LTS) unit on the wellsite. The LTS separates the gas and liquids by means of pressure reduction to cause cooling.

An aerial overview of the wellsites location with reference to KPS is shown in Figure 2-1.

The wellsites access are via vehicle gates which are normally adjacent to the main wellsite control huts for the wellsites. Each wellsite hut is a single storey building which contains the wellsite control logic systems, emergency and communications equipment.

The wellsites have an open layout with areas separated from each other to prevent knock-on effects. The open area reduces the potential for overpressure from an explosion and reduces fire damage / escalation potential.





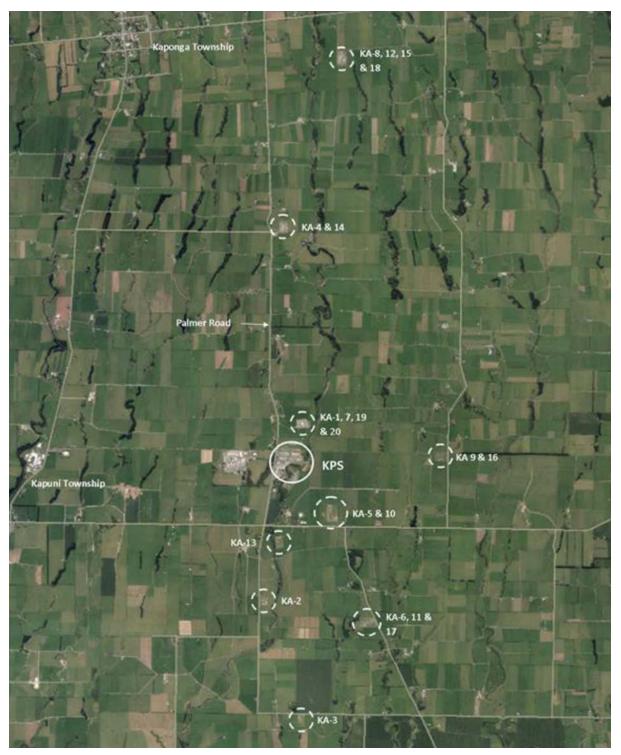



Figure 2-1: Kapuni Wellsites Location with reference to Kapuni Production Station

The details of each of the wellsite is as below.





### 2.3.1 Wellsite KA-1, KA-7, KA-19 and KA-20

Located just off Palmer Road, the site contains 4 wells. A wellstream heater is fitted to the KA-19 well. KA-1 well is suspended, KA-7 is not operational following the recent unsuccessful Water Shut-off (WSO) [Ref. 3] and KA-20 well is an observation well.

This site also acts as a distribution point for gas from the northern wells. It re-routes gas arriving from the gathering lines from wellsite KA-4/14 and KA-8/12/15/18 to KPS.

### 2.3.2 Wellsite KA-2

Located on Palmer Road, the site has an LTS unit and the flowline is equipped with two wellstream coolers.

### 2.3.3 Wellsite KA-3

This wellsite has been suspended and plugged.

### 2.3.4 Wellsite KA-4 and KA-14

Located just off Palmer Road, the site contains two wells, two LTS units, and a wellstream heater.

#### 2.3.5 Wellsite KA-5 and KA-10

Located just off Skeet Road, this site contains one producing well (KA-5) and one observation well (KA-10), with a Desander unit for solids separation, and a PCV used on start-up.

#### 2.3.6 Wellsite KA-6, KA-11 and KA-17

Located on Ahipaipa Road, this site contains two in service wells, and one suspended well (KA-11). KA-6 and KA-17 wellstream fluids are co-mingled, routed through a wellstream cooler and then to an LTS Unit.

### 2.3.7 Wellsite KA-8, KA-12, KA-15 and KA-18

Located just off Eltham Road, this site contains two (2) producing wells. KA-12 well is plugged and scheduled for abandonment and KA-15 well is shut-in and isolated [Ref. 4]. Two wellstream process skids and two wellhead compression units are fitted to the wells.

### 2.3.8 Wellsite KA-13

Located just off Skeet Road, this site contains one well, Desander, a flowline choke valve and a High Pressure Knock Out (HPKO) vessel. It connects into the KA-6/5 gathering lines.

### 2.3.9 Wellsite KA-9

Located on Lower Duthie Road, two wells were drilled on the site, KA-9 (referred to as KW-2) and KA-16. KA-16 is suspended and KW-2 is currently in service as a water injection well. There is very little equipment left on the wellsite, only the water injection line, a filter, and two pig receivers.

The wellsites flow schematic is presented in Figure 2-2.





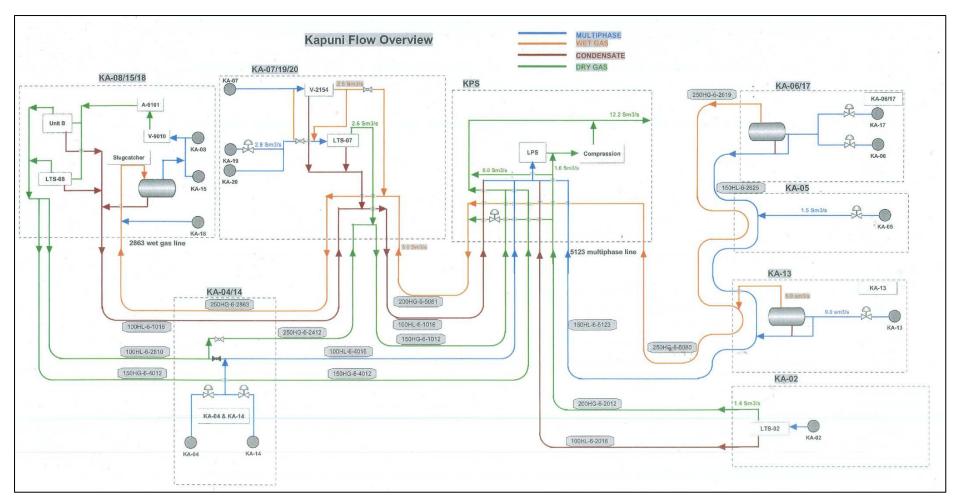



Figure 2-2: Kapuni Wellsites Flow Schematic





### 3. MODELLING INPUTS AND ASSUMPTIONS

This section outlines all modelling inputs and assumptions that will be used in the QRA. The assumptions and methodology will be consistent with those in the Todd Energy's Fire and Gas Analysis and Quantitative Risk Assessment Methodology Guideline [Ref. 5].

### 3.1 Assessment Tool

The risk assessment model will be set up using DNV GL Safeti version 8.22 [Ref. 6].

### 3.2 Definition of Parts Count Sections

### 3.2.1 Isolatable Inventory

Sectionalisation will be performed to segregate the facilities into a number of isolatable sections. Each potential leak source will be associated with a particular isolatable inventory. Primarily, the isolatable inventories will be defined by emergency shutdown valve (ESDV) boundaries. These sections will be split further where required, and the entire contained inventory was considered as available for release. Further segregations are based on:

- Significant change in operating parameters (temperature and pressure);
- Significant change in stream composition;
- Change in stream phase; and
- Equipment location.

The probability of successful detection and isolation is assumed to be 100%. At isolatable boundaries, the valve will be assumed as the last component of the upstream inventory. If a cap or blind flange is shown against a valve, it will be assumed to be closed, even if not indicated as such.

Node sections will be highlighted in the Process Flow Diagrams (PFDs) and will be detailed in a Node Definition table in the QRA report which presents details of all the nodes including unique identification code, definition of boundaries, operating temperature and pressure, maximum pipe diameter, etc.

Following sectionalisation, a parts counts will be conducted to perform the frequency analysis for the QRA.

### 3.2.2 Components

The definition of components within the parts count will be aligned with failure rate data published in the International Association of Oil and Gas Producers (IOGP) Risk Assessment Data Directory (RADD) Process Release Frequency [Ref. 7]. The parts count will consider the following:

- Equipment items;
- Valves;
- Flanges;
- Instrumentation and small-bore fittings; and
- Pipework.

The parts count will be recorded in an MS Excel spreadsheet, with each section broken down based on the piping and instrumentation diagrams (P&IDs). Marked up P&IDs will be attached with the QRA report.





# 3.3 Failure Frequency Data and Hole Size Distributions

### 3.3.1 General Leak Frequency

The leak frequencies for process equipment and piping will be taken from the IOGP Process Release Frequency [Ref. 7]. The release frequencies of the main process equipment items from IOGP are based on the UK HSE (UK Health and Safety Executive) hydrocarbon release database (HCRD) which has been compiled by the UK HSE over a 20-year period. Two sets of data are presented in IOGP Process Release Frequency, which include the 1992 – 2015 data and 2006 – 2015 data.

The recommended values based on experience in the period 2006 – 2015 (inclusive) will be used. The IOGP release notes state that the number of incidents recorded per year in the database has been steadily decreasing, and it is considered appropriate to base the frequency on more recent data on the assumption that this is more representative of what will occur in the future.

Failure frequency data from the HCRD contains detailed historical information on offshore hydrocarbon release incidents occurring in the UK offshore environment and is considered an industry standard for offshore QRA applications. The database categorises failure rates on a detailed basis of equipment type and size and provides a probabilistic hole size distribution associated with the failure.

The HCRD data are also normally used for QRA at onshore facilities, although the use of offshore failure rate may be considered to be conservative for use in most onshore applications, on the basis that:

- Offshore environments tend to be harsher, both external (saliferous environment) and internal (produced sand), increasing the rate of equipment corrosion and erosion;
- Congestion at offshore facilities increases the likelihood of damage through impact; and
- Restricted access to offshore facilities may limit maintenance campaigns, increasing the likelihood of failure.

#### Atmospheric Storage Tank

The IOGP Release Frequency Data does not provide the frequencies for atmospheric storage tanks. Therefore, the following leak frequencies as shown in Table 3-1 from the TNO Purple Book [Ref. 23] will be used for methanol tanks.

Type of Release	Storage Tanks, Atmospheric
Instantaneous release of the complete inventory	5.0E-06 per year
Continuous release of the complete inventory in 10 minutes at a constant rate	5.0E-06 per year
Continuous release from a hole with an effective diameter of 10 mm	1.0E-04 per year

#### Table 3-1: Release Frequencies for Atmospheric Storage Tank





### 3.3.2 Pigging

Pig traps are located at the wellsites to clean, condition and/or monitor the pipelines. The pigging frequency will be used to calculate a modification factor for the leak frequency from the pig receivers.

Tag	Description	т	o	Pigging Frequency (per year)	Average pigging duration (hours)	Modification Factor
		/17				
A-2613	Hydrocarbon gas to gathering line	A-5001	KPS	4	1.5	0.001
A-2614	Hydrocarbon liquid to gathering line	A-5003	KPS	4	1.5	0.001
		КА-0	2			
A-0101B	Hydrocarbon liquid to A-0501A (KPS)	A-0501A	KPS	2	8	0.002
A-0103	Hydrocarbon gas to A-0503 (KPS)	A-0503	KPS	4	1.5	0.001
KA-08/18						
A-2863	Wet gas from KA-4/14	A-2165	KA-19	4	1.5	0.001
A-2813	Dry gas to KA-4	A-0502D	KPS	2	1	0.0002
A-2814	Dry gas to KA-4	A-2440	KA-4/14	4	1.5	0.001
A-2864	Condensate to KA-1&7	A-0501B	KPS	4	7	0.003
		KA-4/	14			
A-2440	Dry gas to KA-7	A-2167	KA-19	1	1	0.0001
		KA-1	9			
A-2165	Wet gas to KA-8/18 via KA-4/14	A-2863	KA-8/18	4	1	0.0005
A-2167	Dry gas from KA-4/14 wellsites	A-2440	KA-4/14	1	1	0.0001
A-2163	Wet gas from A-5002	A-5002	KPS	4	0.5	0.0002
A-2166	Dry gas to KPS A-502A	A-0502A	KPS	1	0.5	0.0001
A-2164	Vector Treated Gas from KPS A-5004	A-5004	KPS	1	0.5	0.0001
A-2169	(Hydrocarbon gas) To Kiwi Dairy Co. & Taranaki Byproducts Co.	N/A	Other	1	6	0.001

Table 3-2: Pigging	Frequencies	and Modification	Factor [Ref 19]
TUDIE 5-2. Flygilly	riequencies		Fuctor [Rej. 19]

Note: No pig traps at KA-05 and KA-13.

### 3.3.3 Release Hole Sizes

For every component failure, there is a range of credible hole sizes ranging from pinhole leak to full bore rupture (FBR). The representative hole sizes to be used for process sites are as shown in Table 3-3.

The geometric mean for hole diameter will be used to represent a range in hole sizes as this approach has a mathematical basis that aligns with numbers that are exponential in nature, such as is the case for hole sizes where the consequence is dependent on the area of the hole size or square of the diameter. For example, the representative hole size for the range 10 - 50 mm is calculated as  $(10 \times 50)^{0.5} = 22$  mm. The use of geometric mean is also aligned with the recommendation in the latest IOGP Process Release Frequency [Ref. 7].





#### Table 3-3: Hole Size Distribution

IOGP Hole Size Group (mm)	Representative Hole Size (mm)
1 - 3	2
3 - 10	6
10 - 50	22
50 - 150	85
> 150	Range geometric mean

22 mm will be used as the maximum hole size for small bore fittings as per the Todd Energy's Methodology Guideline [Ref. 5].

The same approach will be taken to select the representative hole size for rupture cases (release > 150 mm). The selected hole size will be the geometric mean of 150 and the largest line size in the section. This is consistent with the approach used for other release size categories and may be appropriate given the limited FBR base data that is used by the algorithm to calculate frequency.

It is noted for methanol tanks that will reference to TNO Purple Book [Ref. 23] failure data, actual hole sizes following the failure data will be used as there are no sufficient leak size distribution data in Purple Book to calculate the geometric mean.

#### 3.3.4 Leak Frequency Modification Factor

Several leak frequency modification factors will be applied to the release frequency database as per the Todd Energy's Methodology Guideline [Ref. 5]. These are listed below:

- Piping Release Frequency
  - Pipework will be split into categories: process (on skid) piping and interskid piping as described in the definition for equipment type 1: steel process pipes of IOGP Process Release Frequencies [Ref. 7].
  - For interskid piping, the modification factor for "inter-unit piping" (section 3.3.3 of IOGP Process Release Frequencies) which is 0.9 will be applied, i.e. there will be a 90% reduction in frequencies.
- Rupture Release Frequency
  - A review of the UK HSE Hydrocarbon Release Database (HCRD) from 1992 to 2015 has been performed and it was determined that there were 31 incidents in the full-bore release category within 24 years. These were reviewed by Todd to determine the applicability of these cases in comparison with Todd Energy facilities. For wellsites, 22 of the incidents can be discounted on the basis that the release scenarios cannot occur on an onshore wellsite. The frequency for rupture release will be reduced by 65%.

The maximum flange release hole size will also be limited to 22 mm as a release from a flange is normally limited to a segment of a gasket between bolts [Ref. 5].





# 3.4 Blowout Events

For normal operations, it is assumed that a blowout may occur during either production, well workover or well wireline activities. The categories applied for classifying the incidents [Ref. 11 and 12] are shown in Table 3-4.

Main	Category	Description
Blowout and well release	Blowout (surface flow)	• Uncontrolled incidents with surface flow, including subsea releases, e.g., from topside or subsea wellhead, drill floor or Christmas tree.
		<ul> <li>Considered as a full blowout event from the full well bore size. This will be modelled based on the expected maximum well fluid flowrate that the reservoir can supply to the wellbore instead of the wellhead pressure to avoid over-estimating the release rate and creating unrealistic results.</li> </ul>
	Blowout (underground flow)	• Underground flow only or with limited surface flow where minor flow occurred and typically the Blowout Preventer (BOP) has been activated.
		• Considered to have no consequences on the surface and will therefore not considered in this study.
	Diverted well release	• An incident where the diverter system functioned as intended.
		• Assumed to be a well release that can be shut-in or diverted to flare in a short period of time. This event will not be included as the event frequency as given in Table 3-4 is equal to zero.
	Well release	• An incident where hydrocarbons (oil or gas) flow from the well at some point where flow was not intended, and the flow was stopped by use of the barrier system that was available on the well at the time the incident started.
		• Assumed to be release from the wellhead and Christmas trees. It will be modelled as a horizontal well fluid release at well pressures. Release sizes will be based on the same hole size distribution used for other release cases.

Table 3-4:	Categories	of Blowo	ut Incidents
	00.009000	0, 2.0.00	

The blowout likelihood from the IOGP Blowout Frequencies [Ref. 11] will be used, specifically data for offshore operations in areas not operating according to North Sea Standard (Table 2-3 in the IOGP). It is noted that the Kapuni wellsites are located onshore, however, IOGP recommends the use of offshore data presented in Section 2 in the IOGP but noted that there will be a greater degree of uncertainty. The frequency for well wirelining considered in the KA-4/14 and KA-13 QRA [Ref. 1] is once per well per year, and no workover will be performed in the wells' life time. These assumptions will be used in this QRA as well.

Operation	Category	Frequency
Production (Excluding	Blowout (surface flow)	3.3E-05 per well year
external causes Note 1)	Diverted well release	0 per well year
	Well release	2.9E-05 per well year
Wireline	Blowout (surface flow)	9.0E-06 per well year
	Diverted well release	0 per well year
	Well release	2.6E-05 per well year

Note 1: External causes are external loads such as storms or fire leading to blowout or well release.





# 3.5 Ignition Probabilities

The probability of ignition of a release is a function of the release rate, the nature of the material being released and the conditions of the surrounding plant. For this QRA, The Energy Institute (EI) ignition probability model referenced in IOGP Ignition Probabilities [Ref. 8] will be used for the estimation of overall ignition probability of loss of containment scenarios.

For wellsite, ignition probabilities should be taken from Scenarios 5 and 6 and they are assumed to particularly apply to a 'plant' where processing takes place. This is considered conservative for use at wellsites as not much processing takes place.

The scenarios are described as:

- Scenario 5 Small Plant Gas LPG (Gas or LPG release from small onshore plant) Releases of flammable gases, vapour or liquids significantly above their normal boiling point from small onshore plants (plant area up to 1200 m², site area up to 35,000 m²).
- Scenario 6 Small Plant Liquid (Liquid release from small onshore plant) Releases of flammable liquids that do not have any significant flash fraction (10% or less) if released from small onshore plants (plant area up to 1200 m², site area up to 35,000 m²) and which are not bunded or otherwise contained.

The graphs of ignition probabilities as a function of mass release rate are shown in Figure 3-1.

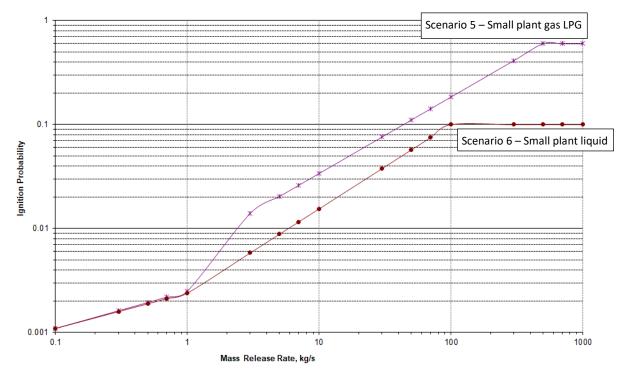



Figure 3-1: Ignition Probability

#### **Early and Delayed Ignition Probabilities**

The graph represents the total ignition probability. An overall distribution for early to delayed ignition ratio of 30:70 to 50:50 split is considered reasonable. The timing of ignition is used as a means to predict the nature of the ignited event. Early ignition is taken to indicate a jet fire or pool fire depending on the material released. Delayed ignition is taken to indicate that the ignition would initially result in a flash fire or explosion.





For this study, a 30:70 split for early to delayed ignition probability will be used. Given the maturity of the hazardous area for all wellsites, it can be assumed that probability of early ignition would be low.

### 3.6 Material Composition

The Heat and Material Balances (HMBs) will be provided by Todd Energy's process engineer [Ref. 9]. The wellstream fluid from each well have different flowrates, material compositions and operating conditions. Any stream that has unique consequences will be represented by dedicated sections. For sections with similar operating conditions or fluid composition that have similar consequence results, the worst-case scenario will be selected as representative, to rationalise the number of scenarios performed. This is to avoid the averaging out of inputs of different wellstreams, as it may create a stream with 'brand new' operating conditions, material compositions and flowrates which does not represent the actual release conditions.

As far as is reasonable, the compositions in each stream are simplified, i.e. isomers are summed together and the C6+ hypothetical materials (KP01, up to KP30) are represented by different heavy alkanes. The following alkanes are selected to represent different ranges of hypothetical materials found in the streams based on their properties:

- KP01 to KP10 are assumed to be C7;
- KP11 to KP20 are assumed to be C10; and
- KP21 to KP30 are assumed to be C20.

Note that the hypothetical materials in the Todd Energy's Methodology Guideline are represented in ST01 to ST30; whereas the hypothetical materials in the HMB provided by the process engineer are represented in KP01 to KP30. The hypotheticals STXX are the same as KPXX [Ref. 19].

The important characteristic of molecular weight is kept close to the actual value to ensure the release rate is representative.

The effects of water cut of the hydrocarbon on fire hazards will be considered to identify the streams that are considered not flammable due to high water content. According to Oil and Gas UK Fire and Explosion Guidance [Ref. 10], for water cuts under 50%, no significant reduction in heat fluxes to engulfed objects can be expected (<10%). However, for water cuts over 50%, the flames are significantly less radiative, and the overall heat flux to an obstacle can be reduced by 40% or more. To be in line with Oil and Gas UK Fire and Explosion Guidance, it is assumed that a mixture remains flammable if it has a water cut of up to 125% (defined as mass of water/ mass of fuel x 100%), although not necessarily capable of supporting a stable flame in the absence of some other supporting mechanisms.

Similarly, increasing concentrations of  $CO_2$  were found to reduce the likelihood of ignition of a methane jet release. At  $CO_2$  concentrations of 22–40% (v/v) it was possible for a self-sustaining flame to exist, but beyond these concentrations a pilot flame was required to aid combustion. Beyond 60%  $CO_2$  the pilot flame had no effect and the mixture was completely inert [Ref. 22].

The average flammability of the mixtures will be calculated by Safeti software, considering the effects of the inert components (e.g.,  $CO_2$ ,  $N_2$  and  $H_2O$ ).

### **3.7** Release Scenarios

Release rates will be calculated based on the release hole size and operating pressure. All releases will be modelled at initial process conditions until the entire isolatable inventory has been depleted and will not take account of the depressurisation that occurs over time.

All wellsites have automated ESD on fire detection, and KA-8/18 has automatic ESD on gas detection as well. Hydrocarbon leaks at the wellsites or along the pipelines (other than minor leaks) will lead to pressure and/or liquid level drop at KPS, which will alert the operators to perform a check at the wellsite(s).





Given the proximity to the KPS, operators can generally arrive at the wellsites within 15 minutes. As such, 15 minutes delayed detection will be assumed, and 15 minutes of released inventory will be added. Full bore rupture cases are only considered credible when there is major work on site, and the wellsite would be manned to detect the leak immediately. Hence undetected full bore rupture is not considered credible.

The inventory for well blowout and well release events will be considered as unlimited because they can be supplied from the downhole reservoirs.

The wellsites bunding and drainage systems are designed to contain hazardous materials within the boundaries of the wellsite. Therefore, condensate pools are assumed to remain confined within the site.

Other assumptions to be applied in the QRA include:

- The height of release from all scenarios will be assumed to be at 1 m above ground, although some equipment may be located at the elevation higher than the ground level.
- For wellsite releases, 70% of the releases should be modelled as horizontal releases and 30% of the releases as vertical releases. Well blowout will be modelled as 100% vertical release.
- All outdoor releases are modelled as non-impinged (free) releases and are monitored at the downwind direction.
- A free-field condition is assumed although in real facility situations, multiple obstructions beyond the leak source could shield or deflect the jet fire. Obstructions in the path of the vapour cloud could also alter the concentration of gas in the cloud
- Fire durations are estimated based on the assumption that isolation and shutdown are immediate.
- In estimating piping length, a safety factor of 1.25 will be applied to all lengths measured from the map to account for bends and elevations which could not be determined from the 2D map.
- For liquid releases from pressurised sources, if the rainout is significant then a pool fire will result. If not, a spray fire (equivalent to a jet fire) will result. It is suggested in the Oil and Gas UK Fire and Explosion Guidance [Ref. 10] that for ignited two-phase releases:
  - If the Gas Oil Ratio (GOR) is low, at drive pressures above 10 bar(abs) a spray fire will result;
  - If the GOR is high, at drive pressures above 5 bar(abs) a spray fire will result.

Note: Gas oil ratio is the ratio of gas to oil within the hydrocarbon fluid. A high GOR indicates a high gas content which has implications for the potential for gas fires from a depressurisation and release [Ref. 10].

### 3.8 Congested Area

A flammable vapour cloud accumulation at congested area(s) is the prerequisite to a vapour cloud explosion (VCE). There is limited equipment at the wellsites, and these areas are generally open with good ventilation expected throughout the year. The possibility of flammable vapour accumulating and developing into subsequent vapour cloud explosions, are considered not credible. Hence, VCE modelling will not be carried out.

### 3.9 Atmospheric Conditions for Modelling

Meteorological conditions impact the outcomes of release modelling, including downwind flammable and toxic vapour cloud dispersion distance (influenced by atmospheric stability and wind speed), rate of pool vaporisation (ambient temperature), and atmospheric attenuation of radiant heat (temperature and relative humidity).





### 3.9.1 Wind Speed and Direction

Wind speed and direction data are taken from NIWA's CliFlo database [Ref. 16] for the Hawera Automatic Weather Station (AWS) to represent the atmospheric conditions at Kapuni. Data for 5-year period from January 2008 to December 2012 are taken, with wind speed and direction measurements taken every hour. The wind rose is shown in Figure 3-2.

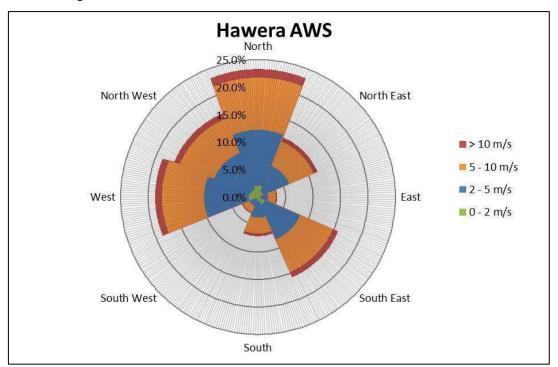



Figure 3-2: Hawera AWS Windrose

The following combinations of wind speed and atmospheric stability will be considered in the QRA that represents the typical wind speed conditions around the wellsites:

- 2/F wind speed of 2 m/s with Pasquill Stability class F stable, night with moderate clouds and light/moderate wind
- 5/D wind speed of 5 m/s with Pasquill Stability class D neutral, little sun and high wind or overcast/windy night
- 10/D wind speed of 10 m/s with Pasquill Stability class D

For the modelling, wind speed reference height (the height at which the wind impacts a release) will be set at 1 m (i.e., so as to match the release height). The Power Law wind profile will be applied where the wind speed varies with height according to power-law profile.

By consideration of the Pasquill Stability class relationship with day and night and wind speeds, the wind data for use in the QRA model is calculated as shown in Table 3-6.

Wind Speed / Pasquill Stability	North	North East	East	South East	South	South West	West	North West	Total
0 - 2 m/s / F	2.1%	1.1%	0.3%	1.4%	0.6%	0.3%	1.7%	1.5%	9.0%





Wind Speed / Pasquill Stability	North	North East	East	South East	South	South West	West	North West	Total
2 - 5 m/s / D	10.1%	5.1%	1.5%	6.9%	3.1%	1.4%	8.2%	7.2%	43.5%
> 5 m/s / D	11.1%	5.6%	1.7%	7.5%	3.4%	1.5%	8.9%	7.9%	47.5%
Total	23.3%	11.8%	3.5%	15.9%	7.1%	3.2%	18.7%	16.5%	100.0%

### 3.9.2 Ambient Temperature and Relative Humidity

The following ambient temperature and relative humidity as consistent with those used in the KPS QRA [Ref. 18] will be used in the QRA:

- Ambient temperature: 14°C
- Relative humidity: 83%

#### 3.9.3 Solar Radiation

The allowance for solar radiation will not be included in the thermal radiation effects consideration.

### 3.9.4 Surface Roughness

Safeti cannot take into account the effects of the local undulating topography for the gas dispersion. The surface roughness of 30 mm will be applied, which generally represents an area of "open flat terrain; grass, few isolated objects" to represent the open area of the wellsites.

### 3.10 Fatality Criteria

The physical effects from these consequences can have different impacts on humans. The variation of harm from different effects is reflected in a parameter known as the harm probability. In this study, human harm relates to high potential for fatality.

### 3.10.1 Heat Radiation

The method of calculating the probability of fatality for an individual, given known exposure duration and thermal heat radiation levels, is undertaken by using a Probit function. The Probit function is a general formula which takes the same form, but with various constants used. The Probit used for lethality calculations is taken from the TNO Green Book [Ref. 17]. The Probit function is defined as follows:

Probit =  $-36.38 + 2.56 \ln (t \times q^{4/3})$ 

Where:

t = exposure duration in seconds

q = thermal radiation level in W/m²

Safeti calculates the Probit values during the analysis.

An exposure duration of 20 seconds has been used as a base case, although it is noted that personnel are likely to find some form of shielding protection within this time frame.

### 3.10.2 Flash Fire

If personnel are within the 100% lower flammable limit (LFL) of the gas plume, 100% fatality is assumed. LFL is the lower end of the concentration range over which the flammable mixture of vapour in air can be ignited.





A flash fire occurs when a dispersed cloud of flammable vapour and air mixture is ignited within its flammable regions, causing a wall of flame to spread throughout the flammable region and back to the release point. The flame propagates through the cloud in a manner such that negligible or no damaging overpressure is generated. This flash is almost instantaneous as the flame propagates at high speed through the cloud and back to the source.

An assumption of 100% fatality rate within the footprint of the cloud is conservative and does not allow for potential risk reducing considerations such as:

- uneven mixing of flammable vapour and air in the cloud resulting in uneven propagation of the flame,
- topography,
- sparsely populated rural land use adjoining the site,
- availability of shelter,
- opportunity for escape, and
- clothing worn by persons exposed to the flash fire.

Thermal radiation outside of the flash fire footprint, reduces rapidly and is not sustained due to the instantaneous nature of the event. The potential for fatality outside the flash fire footprint is not considered credible.

### 3.10.3 BLEVE

Boiling Liquid Expanding Vapour Explosion (BLEVE) is an escalation scenario that occurs as a result of prolonged flame impingement on above ground pressurised vessels containing materials such as liquefied petroleum gas (LPG) or light end hydrocarbon. BLEVE would result in an explosion overpressure together with a fireball and missile generation over some distance. As the fireball tends to drift upward and to avoid double counting, only fatalities from the explosion overpressure effects are considered in this risk assessment. The probability of BLEVE depends on various factors, including the types of flammable material and liquid inventory in the vessel, material of construction of the vessel, types and number of fire protection systems (e.g. relief valves, cooling systems), mechanism of vessel failure (external impact, jet fire impingement or pool fire impingement), etc. Passive Fire Protection (PFP) can be provided on pressurised vessels to minimise the probability of BLEVE. There is no clear guideline or criteria to determine the likelihood of a BLEVE on a pressurised vessel. For this risk assessment, BLEVE will be considered credible if a pressurised vessel containing at least 4 m³ of volatile hydrocarbon (liquid butane or lighter) is exposed to direct flame impingement for 5 minutes or longer.

Liquid volume calculation for the vessels at the wellsites are shown in Table 3-7.

Тад	Description	Diameter (m)	Length / Height (m)	Volume (m³)	Liquid Level (mm)	Liquid Volume (m³)	
	КА-02						
V-201A	HP Knockout	0.686	4.572	1.69	343	0.84	
V-204A	Secondary Knockout	0.914	3.048	2.00	457	1.00	
V-0202A	LT Separator	1.219	3.810	4.45	1905	2.22	
КА-05							
V-0516	KA-5 Desander	0.406	4.572	0.59	406	0.59	

Table 3-7: Kapuni Wellsites Vessels Liquid Volume Estimation





Тад	Description	Diameter (m)	Length / Height (m)	Volume (m³)	Liquid Level (mm)	Liquid Volume (m³)		
	KA-19							
V-2154	Wellhead Knockout	1.068	4.572	4.10	534	2.05		
	KA-8/18							
V-2803	HP Knockout Drum	0.685	4.570	1.68	342.5	0.84		
V-9010	Wellstream Separator (2 phase)	1.600	4.500	9.05	800	4.52		
V-9020	Wellstream Separator (2 phase)	1.600	4.500	9.05	800	4.52		
V-2808	LT Separator	1.830	5.640	14.83	915	7.42		
V-2804	Low Temperature Separator	1.220	3.810	4.45	1905	2.23		
V-2805	Secondary Knockout	915	3.050	2.01	457.5	1.00		

Based on the table, the liquid volume for the KA-8/18 Wellstream Separators (V-9010 & V-9020) and LT Separator (V-2808) might be greater than 4 m³. However, based on the Heat and Material Balance, the composition of the liquid sections from the Wellstream Separators is mainly water (approx. 88 vol%), and the liquid from the LT Separator is mostly heavy hydrocarbons with volatile hydrocarbons making up only 15 vol% of the total composition. Therefore, it is considered that all vessels in Kapuni Wellsite do not have BLEVE potential.

### 3.10.4 Toxic Effects

Fatality probability when exposed to toxic gas as a function of exposure concentration and duration can be calculated by using a probit function of the form given below:

Probit =  $a + b \ln (C^n \times t)$ 

where:

t = exposure duration in minutes

C = concentration in ppm

a, b and n = material specific probit constants

Toxic effect from methanol will be considered in the QRA. UK HSE gives the following toxic load values for methanol:

- SLOT =  $8.02 \times 10^5$  ppmⁿ · min (1% fatality probability)
- SLOD =  $2.67 \times 10^6$  ppmⁿ · min (50% fatality probability)

By solving the simultaneous equation, the other constants a and b can be calculated. The probit constants for methanol are:

```
a = -23.67
b = 1.94
n = 1
```





# 3.11 Risk Criteria

Risk is the combination of the likelihood and consequence of such accidents. It is defined as the probability of a specific adverse event occurring in a specific period or in specified circumstances. The likelihood may be expressed either as a frequency (i.e. the rate of events per unit time) or a probability (i.e. the chance of the event occurring in specified circumstances). The consequence is the degree of harm caused by the event.

Escape and evacuation fatalities are generally not considered for an onshore plant due to the open site layout and personnel's ready accessibility to the muster area. Hence, only immediate fatalities will be taken into account when performing the risk analysis to onsite workers.

Key deliverable for this study is the location specific individual risk (LSIR) in the form of risk contour. LSIR is the risk of fatality at a point in space to a hypothetical individual at a location for 365 days per year, 24 hours a day, unprotected and unable to escape. In real situation, people do not constantly remain in one location, so this risk value does not provide a realistic representation of the true level of risk.

However, this value allows different areas to be compared on the same basis and is a useful measure for establishing the most hazardous areas of the plant, or for the comparison of facility risk profiles against standard criteria. The LSIR can be expressed as follows:

$$LSIR = \Sigma F \times P$$

Where:

F = Frequency of an event outcome per year

P = Probability of death due to the event at the location

 $\Sigma$  = Sum over all modelled events

LSIR is usually presented as risk contours or by defining risks at selected locations (e.g. site boundary).

As there are no standard risk criteria which have been developed for the NZ context, this deliverable will be assessed against the suggested risk criteria in the NSW Hazardous Industry Planning Advisory Paper No. 4 (HIPAP4) "Risk Criteria for Land Use Planning" as shown in Table 3-8.

Land Use	Risk Criteria Adopted (per annum)	Interpretation for QRA				
Hospitals, schools, childcare facilities, old age housing	0.5 × 10 ⁻⁶ (or 5 × 10 ⁻⁷ ) (1 in 2 million)	$5 \times 10^{-7}$ risk contour should not extend to these areas				
Residential, hotels, motels, tourist resorts	1 × 10 ⁻⁶ (1 in 1 million)	$1 \times 10^{-6}$ risk contour should not extend to these areas				
Commercial developments including retail centres, offices and entertainment centres	5 × 10 ⁻⁶ (1 in 200,000)	$5 \times 10^{-6}$ risk contour should not extend to these areas				
Sporting complexes and active open space	10 × 10 ⁻⁶ (or 1 × 10 ⁻⁵ ) (1 in 100,000)	$1 \times 10^{-5}$ risk contour should not extend to these areas				
Industrial	50 × 10 ⁻⁶ (or 5 × 10 ⁻⁵ ) (1 in 20,000)	$5 \times 10^{-5}$ risk contour should, as a target, be contained within the				

Table 3-8: HIPAP 4	Individual	Fatality	Risk	criteria
10010 0 0.1111 1	manuada	, acancy	11151	critcrita

boundaries of the industrial site

where applicable





NSW HIPAP 4 states that where these criteria are initially exceeded, commercial and industrial land development may be appropriate where mitigating measures can be implemented to reduce risk exposure to less than the target individual fatality risk level.





#### 4. **REFERENCES**

- 1. QRA Results KA-4/14 & KA-13 Wellsites Memorandum, 620053-MMO-R0001, dated 17 July 2019.
- 2. Safety Case Kapuni Production Station, Doc. No. NPL649981, Rev. 1, January 2018.
- 3. Email correspondence with Roisin Johnson, Mike Brophy and Rafeal Moreno (Todd Energy) and Y'vette Lee (Worley New Zealand), Sub.: RE: 610114 Kapuni Wellsites QRA Clarification KA-7 dated 6 May 2020.
- 4. Email correspondence with Roisin Johnson, Mike Brophy and Rafeal Moreno (Todd Energy) and Y'vette Lee (Worley New Zealand), Sub.: RE: KA-15 well flow check dated 18 May 2020.
- 5. Todd Energy Fire and Gas Analysis and Quantitative Risk Assessment Methodology Guideline, NZ-1005-TECD721654, Rev. 0.
- 6. DNV GL Safeti software package version 8.22.
- 7. IOGP Risk Assessment Data Directory, Process Release Frequencies (OGP 434-1), September 2019.
- 8. IOGP Risk Assessment Data Directory, Ignition Probabilities (OGP 434-6), September 2019.
- 9. Email correspondence with Rebekah Heperi (Todd Energy) and Y'vette Lee (Worley), Sub.: 610114 Wellsites QRA information request heat and material balance dated 27 May 2020.
- 10. Oil and Gas UK, Fire and Explosion Guidance, Issue 1 May 2007.
- 11. IOGP Risk Assessment Data Directory, Blowout Frequencies, September 2019.
- 12. SINTEF Offshore Blowout Database website, <u>https://www.sintef.no/en/projects/sintef-offshore-blowout-database/</u>
- 13. New South Wales Hazardous Industry Planning Advisory Paper No. 4 (HIPAP4), Risk Criteria for Land Use Safety Planning, January 2011.
- 14. Australian Standard, The Storage and Handling of Flammable and Combustible Liquids, AS 1940:2017.
- 15. Pressure-relieving and Depressuring Systems, API Standard 521, 6th Edition, January 2014.
- 16. New Zealand National Climate Database (http://cliflo.niwa.co.nz/).
- 17. Methods for the Determination of Possible Damage to People and Objects Resulting from Release of Hazardous Materials ('TNO Green Book').
- 18. Kapuni Production Station, Quantitative Risk Assessment Report, 610052-RPT-R0002, Rev. 1, April 2020.
- 19. Email correspondence between Mike Brophy (Todd Energy) and Y'vette Lee (Worley New Zealand), Sub.: RE: KA-18 Questions dated 13 July 2020.
- 20. Email correspondence between Mike Brophy (Todd Energy) and Y'vette Lee (Worley New Zealand), Sub.: RE: 610114 Wellsites QRA information request heat and material balance dated 13 July 2020.
- 21. Discussion between Mike Brophy and Y'vette Lee on 31 July 2020.
- 22. Flammability of Hydrocarbon / CO2 mixtures: Part 1, Ignition and Explosion Characteristic, Symposium Series No. 156, 2011.
- 23. TNO Purple Book, Guidelines for Quantitative Risk Assessment, December 2005.